星- ris辅助无人机网络的SCMA:能源效率最大化的DRL方法

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Benmeziane Imad-Ddine Ghomri;Mohammed Yassine Bendimerad;Hmaied Shaiek
{"title":"星- ris辅助无人机网络的SCMA:能源效率最大化的DRL方法","authors":"Benmeziane Imad-Ddine Ghomri;Mohammed Yassine Bendimerad;Hmaied Shaiek","doi":"10.1109/LCOMM.2025.3564715","DOIUrl":null,"url":null,"abstract":"This letter proposes a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-aided downlink (DL) sparse code multiple access (SCMA) uncrewed aerial vehicle (UAV) network, where a UAV serves as an aerial base station to provide wireless communications. The objective is to maximize the total energy efficiency (EE) of the system. To achieve this, we introduce a deep reinforcement learning (DRL) framework to jointly optimize the SCMA mapping matrix (MM), power allocation (PA), UAV trajectory, and the phase shifts of the STAR-RIS. The DRL agent is trained using the proximal policy optimization (PPO) algorithm. Simulation results demonstrate the superior performance of the proposed framework over both power-domain non-orthogonal multiple access (PD-NOMA) and conventional RIS counterparts.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 6","pages":"1431-1435"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCMA for STAR-RIS-Assisted UAV Networks: A DRL Approach for Energy Efficiency Maximization\",\"authors\":\"Benmeziane Imad-Ddine Ghomri;Mohammed Yassine Bendimerad;Hmaied Shaiek\",\"doi\":\"10.1109/LCOMM.2025.3564715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-aided downlink (DL) sparse code multiple access (SCMA) uncrewed aerial vehicle (UAV) network, where a UAV serves as an aerial base station to provide wireless communications. The objective is to maximize the total energy efficiency (EE) of the system. To achieve this, we introduce a deep reinforcement learning (DRL) framework to jointly optimize the SCMA mapping matrix (MM), power allocation (PA), UAV trajectory, and the phase shifts of the STAR-RIS. The DRL agent is trained using the proximal policy optimization (PPO) algorithm. Simulation results demonstrate the superior performance of the proposed framework over both power-domain non-orthogonal multiple access (PD-NOMA) and conventional RIS counterparts.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 6\",\"pages\":\"1431-1435\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10978029/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10978029/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

该信函提出了一种同时发射和反射可重构智能表面(STAR-RIS)辅助下行(DL)稀疏码多址(SCMA)无人机(UAV)网络,其中无人机作为空中基站提供无线通信。目标是使系统的总能源效率(EE)最大化。为了实现这一目标,我们引入了一个深度强化学习(DRL)框架来共同优化SCMA映射矩阵(MM)、功率分配(PA)、无人机轨迹和STAR-RIS的相移。DRL代理使用近端策略优化(PPO)算法进行训练。仿真结果表明,该框架在功率域非正交多址(PD-NOMA)和传统RIS对应物上都具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCMA for STAR-RIS-Assisted UAV Networks: A DRL Approach for Energy Efficiency Maximization
This letter proposes a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-aided downlink (DL) sparse code multiple access (SCMA) uncrewed aerial vehicle (UAV) network, where a UAV serves as an aerial base station to provide wireless communications. The objective is to maximize the total energy efficiency (EE) of the system. To achieve this, we introduce a deep reinforcement learning (DRL) framework to jointly optimize the SCMA mapping matrix (MM), power allocation (PA), UAV trajectory, and the phase shifts of the STAR-RIS. The DRL agent is trained using the proximal policy optimization (PPO) algorithm. Simulation results demonstrate the superior performance of the proposed framework over both power-domain non-orthogonal multiple access (PD-NOMA) and conventional RIS counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信