一类非线性反应扩散方程的非李非经典对称解

IF 3.8 2区 数学 Q1 MATHEMATICS, APPLIED
David Plenty, Maureen P. Edwards
{"title":"一类非线性反应扩散方程的非李非经典对称解","authors":"David Plenty,&nbsp;Maureen P. Edwards","doi":"10.1016/j.cnsns.2025.108973","DOIUrl":null,"url":null,"abstract":"<div><div>Nonlinear one-dimensional reaction–diffusion equations are useful for modeling processes in science and engineering. Non-classical symmetry analysis with a vanishing coefficient of <span><math><mfrac><mrow><mi>∂</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac></math></span> is applied to search for non-Lie solutions of a class of nonlinear reaction–diffusion equations. The analysis leads to two non-classical symmetries. Each symmetry gives a solution that cannot be constructed using classical symmetries or non-classical symmetries with a non-vanishing coefficient of <span><math><mfrac><mrow><mi>∂</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac></math></span>. A solution is presented as a potential model for population growth in biology.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"150 ","pages":"Article 108973"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Lie non-classical symmetry solutions of a class of nonlinear reaction–diffusion equations\",\"authors\":\"David Plenty,&nbsp;Maureen P. Edwards\",\"doi\":\"10.1016/j.cnsns.2025.108973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nonlinear one-dimensional reaction–diffusion equations are useful for modeling processes in science and engineering. Non-classical symmetry analysis with a vanishing coefficient of <span><math><mfrac><mrow><mi>∂</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac></math></span> is applied to search for non-Lie solutions of a class of nonlinear reaction–diffusion equations. The analysis leads to two non-classical symmetries. Each symmetry gives a solution that cannot be constructed using classical symmetries or non-classical symmetries with a non-vanishing coefficient of <span><math><mfrac><mrow><mi>∂</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac></math></span>. A solution is presented as a potential model for population growth in biology.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"150 \",\"pages\":\"Article 108973\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425003843\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425003843","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

非线性一维反应扩散方程对于科学和工程过程的建模是有用的。应用具有∂∂t消失系数的非经典对称分析来搜索一类非线性反应扩散方程的非李解。分析得出两种非经典对称性。每个对称都给出了一个解决方案,该解决方案不能使用具有不消失系数的∂∂t的经典对称或非经典对称来构建。提出了一种解决方案,作为生物学中人口增长的潜在模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Lie non-classical symmetry solutions of a class of nonlinear reaction–diffusion equations
Nonlinear one-dimensional reaction–diffusion equations are useful for modeling processes in science and engineering. Non-classical symmetry analysis with a vanishing coefficient of t is applied to search for non-Lie solutions of a class of nonlinear reaction–diffusion equations. The analysis leads to two non-classical symmetries. Each symmetry gives a solution that cannot be constructed using classical symmetries or non-classical symmetries with a non-vanishing coefficient of t. A solution is presented as a potential model for population growth in biology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信