基于渐近均匀化方法的超导多级子缆多尺度力学模型

IF 4.2 2区 工程技术 Q1 MECHANICS
Yuchen Han , Huadong Yong , Youhe Zhou
{"title":"基于渐近均匀化方法的超导多级子缆多尺度力学模型","authors":"Yuchen Han ,&nbsp;Huadong Yong ,&nbsp;Youhe Zhou","doi":"10.1016/j.euromechsol.2025.105755","DOIUrl":null,"url":null,"abstract":"<div><div>As a critical component of the International Thermonuclear Experimental Reactor (ITER), the complex stress state of superconducting wires within Cable-in-Conduit Conductors (CICC) significantly impacts overall system performance. To address the high computational and economic costs associated with traditional numerical simulations and experiments, a multiscale numerical model is developed based on the asymptotic homogenization method (AHM) to study the macro global mechanical responses and micro stress states of CICC sub-cables. The numerical model incorporates macroscopic modeling while retaining the microscopic information from superconducting wires. Macroscopic strain data from the sub-cable are input into a representative volume element (RVE) to obtain the true microscopic stress distribution. The AHM framework's accuracy is validated by comparing the global mechanical responses, local contact forces, and micro stress distributions of sub-cables with results from direct numerical simulations (DNS), experiments and theoretical analysis. Compared to DNS, AHM-based numerical modeling reduces computational time cost by an order of magnitude while ensuring the validity of the calculation results. Furthermore, the axial load bearing capacity and lateral contact force of three representative superconducting sub-cables are evaluated, revealing that adjusting structural parameters of sub-cables can improve local contact forces while keeping von Mises stress of filament bundles change slightly, which enhances the global load-bearing and local contact performance. This work provides a valuable framework for efficient multiscale numerical modeling of CICC multilevel sub-cables containing thousands of composite wires.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"114 ","pages":"Article 105755"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiscale mechanical model of superconducting multilevel sub-cables based on asymptotic homogenization method\",\"authors\":\"Yuchen Han ,&nbsp;Huadong Yong ,&nbsp;Youhe Zhou\",\"doi\":\"10.1016/j.euromechsol.2025.105755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a critical component of the International Thermonuclear Experimental Reactor (ITER), the complex stress state of superconducting wires within Cable-in-Conduit Conductors (CICC) significantly impacts overall system performance. To address the high computational and economic costs associated with traditional numerical simulations and experiments, a multiscale numerical model is developed based on the asymptotic homogenization method (AHM) to study the macro global mechanical responses and micro stress states of CICC sub-cables. The numerical model incorporates macroscopic modeling while retaining the microscopic information from superconducting wires. Macroscopic strain data from the sub-cable are input into a representative volume element (RVE) to obtain the true microscopic stress distribution. The AHM framework's accuracy is validated by comparing the global mechanical responses, local contact forces, and micro stress distributions of sub-cables with results from direct numerical simulations (DNS), experiments and theoretical analysis. Compared to DNS, AHM-based numerical modeling reduces computational time cost by an order of magnitude while ensuring the validity of the calculation results. Furthermore, the axial load bearing capacity and lateral contact force of three representative superconducting sub-cables are evaluated, revealing that adjusting structural parameters of sub-cables can improve local contact forces while keeping von Mises stress of filament bundles change slightly, which enhances the global load-bearing and local contact performance. This work provides a valuable framework for efficient multiscale numerical modeling of CICC multilevel sub-cables containing thousands of composite wires.</div></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"114 \",\"pages\":\"Article 105755\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997753825001895\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825001895","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

超导导线作为国际热核实验反应堆(ITER)的关键部件,其复杂的应力状态对整个系统的性能有着重要的影响。针对传统数值模拟和实验方法计算成本高、经济成本高的问题,基于渐近均匀化方法(AHM)建立了中金副索宏观全局力学响应和微观应力状态的多尺度数值模型。该数值模型在保留超导导线的微观信息的同时,结合了宏观建模。将子缆的宏观应变数据输入到代表性体积元(RVE)中,以获得真实的细观应力分布。AHM框架的准确性通过将整体力学响应、局部接触力和子缆的微应力分布与直接数值模拟(DNS)、实验和理论分析的结果进行比较来验证。与DNS相比,基于ahm的数值建模在保证计算结果的有效性的同时,将计算时间成本降低了一个数量级。通过对3种具有代表性的超导子缆的轴向承载能力和横向接触力进行评估,发现调整子缆的结构参数可以提高局部接触力,同时保持丝束的von Mises应力变化不大,从而提高了整体承载性能和局部接触性能。该工作为中金公司包含数千根复合导线的多级子电缆的高效多尺度数值模拟提供了一个有价值的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiscale mechanical model of superconducting multilevel sub-cables based on asymptotic homogenization method
As a critical component of the International Thermonuclear Experimental Reactor (ITER), the complex stress state of superconducting wires within Cable-in-Conduit Conductors (CICC) significantly impacts overall system performance. To address the high computational and economic costs associated with traditional numerical simulations and experiments, a multiscale numerical model is developed based on the asymptotic homogenization method (AHM) to study the macro global mechanical responses and micro stress states of CICC sub-cables. The numerical model incorporates macroscopic modeling while retaining the microscopic information from superconducting wires. Macroscopic strain data from the sub-cable are input into a representative volume element (RVE) to obtain the true microscopic stress distribution. The AHM framework's accuracy is validated by comparing the global mechanical responses, local contact forces, and micro stress distributions of sub-cables with results from direct numerical simulations (DNS), experiments and theoretical analysis. Compared to DNS, AHM-based numerical modeling reduces computational time cost by an order of magnitude while ensuring the validity of the calculation results. Furthermore, the axial load bearing capacity and lateral contact force of three representative superconducting sub-cables are evaluated, revealing that adjusting structural parameters of sub-cables can improve local contact forces while keeping von Mises stress of filament bundles change slightly, which enhances the global load-bearing and local contact performance. This work provides a valuable framework for efficient multiscale numerical modeling of CICC multilevel sub-cables containing thousands of composite wires.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信