{"title":"丁香花及营养组织花青素合成基因的内参基因选择及表达分析。","authors":"Mathabatha F. Maleka , Johan J. Spies","doi":"10.1016/j.plgene.2025.100521","DOIUrl":null,"url":null,"abstract":"<div><div>Pigmentation is one of the most variable traits in plants, with flowers typically being the main tissue that displays such diversity. Unlike other horticulturally valuable plants, the genetic basis of flower pigmentation in <em>Clivia</em> species remains poorly understood. Therefore, this study aimed to analyze the expression of numerous anthocyanin biosynthetic genes in flower and vegetative tissues of the most popular <em>Clivia</em> species, <em>Clivia miniata</em>. Such information can facilitate the breeding and biotechnological use of <em>Clivia</em> in the global horticulture value-chain. Initially, we mined a previously assembled <em>C. miniata</em> flower transcriptome for <em>WDR</em> transcripts that are homologous to key pigmentation genes from maize (<em>PAC1</em>) and <em>Arabidopsis thaliana</em> (<em>TTG1</em>). Subsequently, we identified and tested eight candidate reference genes (<em>18S</em>, <em>ACT</em>, <em>EF1</em>α, <em>G6PDH</em>, <em>PP2A</em>, <em>RNPII</em>, <em>TUB</em>α and <em>UBQ</em>) for expression stability in <em>Clivia</em> tissues using geNorm, NormFinder, BestKeeper, and the comparative Delta-Ct method. Homology analysis revealed a transcript encoding a partial protein with specific motifs that are common in pigmentation-related WDR proteins. Further, three reference genes (<em>CmiPP2A</em>, <em>CmiEF1</em>α and <em>Cmi18S</em>) were most stable in tested <em>Clivia</em> tissues. Quantitative real-time PCR (qPCR) analyses of ten anthocyanin biosynthetic genes (<em>CmiDFR</em>, <em>CmiF3H</em>, <em>CmiF3’H</em>, <em>CmiUF3GT</em>, <em>CmibHLH001</em>, <em>CmibHLH002</em>, <em>CmiMYB001</em>, <em>CmiMYB002</em>, <em>CmiMYB003</em> and <em>CmiWDR001</em>) normalized against the three reference genes revealed that most had relatively higher expression levels in flower than vegetative tissues. Also, expression was generally higher during anthesis than in buds, but some genes remarkably showed marked expression in roots too. Overall, this is the first study to systematically select and validate reference genes for expression analysis of anthocyanin biosynthetic genes in <em>Clivia</em>.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"43 ","pages":"Article 100521"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reference gene selection and expression analyses of anthocyanin biosynthetic genes in flower and vegetative tissues of Clivia miniata L.\",\"authors\":\"Mathabatha F. Maleka , Johan J. Spies\",\"doi\":\"10.1016/j.plgene.2025.100521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pigmentation is one of the most variable traits in plants, with flowers typically being the main tissue that displays such diversity. Unlike other horticulturally valuable plants, the genetic basis of flower pigmentation in <em>Clivia</em> species remains poorly understood. Therefore, this study aimed to analyze the expression of numerous anthocyanin biosynthetic genes in flower and vegetative tissues of the most popular <em>Clivia</em> species, <em>Clivia miniata</em>. Such information can facilitate the breeding and biotechnological use of <em>Clivia</em> in the global horticulture value-chain. Initially, we mined a previously assembled <em>C. miniata</em> flower transcriptome for <em>WDR</em> transcripts that are homologous to key pigmentation genes from maize (<em>PAC1</em>) and <em>Arabidopsis thaliana</em> (<em>TTG1</em>). Subsequently, we identified and tested eight candidate reference genes (<em>18S</em>, <em>ACT</em>, <em>EF1</em>α, <em>G6PDH</em>, <em>PP2A</em>, <em>RNPII</em>, <em>TUB</em>α and <em>UBQ</em>) for expression stability in <em>Clivia</em> tissues using geNorm, NormFinder, BestKeeper, and the comparative Delta-Ct method. Homology analysis revealed a transcript encoding a partial protein with specific motifs that are common in pigmentation-related WDR proteins. Further, three reference genes (<em>CmiPP2A</em>, <em>CmiEF1</em>α and <em>Cmi18S</em>) were most stable in tested <em>Clivia</em> tissues. Quantitative real-time PCR (qPCR) analyses of ten anthocyanin biosynthetic genes (<em>CmiDFR</em>, <em>CmiF3H</em>, <em>CmiF3’H</em>, <em>CmiUF3GT</em>, <em>CmibHLH001</em>, <em>CmibHLH002</em>, <em>CmiMYB001</em>, <em>CmiMYB002</em>, <em>CmiMYB003</em> and <em>CmiWDR001</em>) normalized against the three reference genes revealed that most had relatively higher expression levels in flower than vegetative tissues. Also, expression was generally higher during anthesis than in buds, but some genes remarkably showed marked expression in roots too. Overall, this is the first study to systematically select and validate reference genes for expression analysis of anthocyanin biosynthetic genes in <em>Clivia</em>.</div></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"43 \",\"pages\":\"Article 100521\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407325000320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407325000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Reference gene selection and expression analyses of anthocyanin biosynthetic genes in flower and vegetative tissues of Clivia miniata L.
Pigmentation is one of the most variable traits in plants, with flowers typically being the main tissue that displays such diversity. Unlike other horticulturally valuable plants, the genetic basis of flower pigmentation in Clivia species remains poorly understood. Therefore, this study aimed to analyze the expression of numerous anthocyanin biosynthetic genes in flower and vegetative tissues of the most popular Clivia species, Clivia miniata. Such information can facilitate the breeding and biotechnological use of Clivia in the global horticulture value-chain. Initially, we mined a previously assembled C. miniata flower transcriptome for WDR transcripts that are homologous to key pigmentation genes from maize (PAC1) and Arabidopsis thaliana (TTG1). Subsequently, we identified and tested eight candidate reference genes (18S, ACT, EF1α, G6PDH, PP2A, RNPII, TUBα and UBQ) for expression stability in Clivia tissues using geNorm, NormFinder, BestKeeper, and the comparative Delta-Ct method. Homology analysis revealed a transcript encoding a partial protein with specific motifs that are common in pigmentation-related WDR proteins. Further, three reference genes (CmiPP2A, CmiEF1α and Cmi18S) were most stable in tested Clivia tissues. Quantitative real-time PCR (qPCR) analyses of ten anthocyanin biosynthetic genes (CmiDFR, CmiF3H, CmiF3’H, CmiUF3GT, CmibHLH001, CmibHLH002, CmiMYB001, CmiMYB002, CmiMYB003 and CmiWDR001) normalized against the three reference genes revealed that most had relatively higher expression levels in flower than vegetative tissues. Also, expression was generally higher during anthesis than in buds, but some genes remarkably showed marked expression in roots too. Overall, this is the first study to systematically select and validate reference genes for expression analysis of anthocyanin biosynthetic genes in Clivia.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.