Amr Meawad , Omar Soliman , Ippei Maruyama , Saber Ibrahim
{"title":"剥离层状双氢氧化物增强水泥基材料的早期水化和力学性能","authors":"Amr Meawad , Omar Soliman , Ippei Maruyama , Saber Ibrahim","doi":"10.1016/j.materresbull.2025.113608","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the preparation and performance of ExLDH, synthesized from Ca-Al layered double hydroxide (Ca-Al LDH) and polymethylmethacrylate (PMMA), as a cement additive to accelerate early hydration and enhance early strength in cement-based materials. The synthesized Ca-Al/PMMA LDH was characterized using X-ray diffraction (XRD), ATR-FTIR, SEM, TEM, BET surface area analysis, and dynamic light scattering (DLS). The composite incorporated into Portland cement at 1, 2, and 3 wt. % concentrations. Isothermal calorimetry assessed hydration heat over 72 h, while microstructural evaluation employed QXRD, ATR-FTIR, TGA-DTA, SEM, and water vapor sorption tests. Mechanical properties were evaluated through compressive and flexural strength tests.</div><div>Results confirmed the successful fabrication of ExLDH micro/nano-composites, which serve a dual role in the cement matrix: acting as nucleation sites for hydrated phases and as void fillers to improve structural compaction. This dual effect accelerates hydration, increases hydrated phase content, and significantly enhances compressive strength and structural density.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"192 ","pages":"Article 113608"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced early hydration and mechanical properties of cement-based materials with exfoliated layered double hydroxide\",\"authors\":\"Amr Meawad , Omar Soliman , Ippei Maruyama , Saber Ibrahim\",\"doi\":\"10.1016/j.materresbull.2025.113608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the preparation and performance of ExLDH, synthesized from Ca-Al layered double hydroxide (Ca-Al LDH) and polymethylmethacrylate (PMMA), as a cement additive to accelerate early hydration and enhance early strength in cement-based materials. The synthesized Ca-Al/PMMA LDH was characterized using X-ray diffraction (XRD), ATR-FTIR, SEM, TEM, BET surface area analysis, and dynamic light scattering (DLS). The composite incorporated into Portland cement at 1, 2, and 3 wt. % concentrations. Isothermal calorimetry assessed hydration heat over 72 h, while microstructural evaluation employed QXRD, ATR-FTIR, TGA-DTA, SEM, and water vapor sorption tests. Mechanical properties were evaluated through compressive and flexural strength tests.</div><div>Results confirmed the successful fabrication of ExLDH micro/nano-composites, which serve a dual role in the cement matrix: acting as nucleation sites for hydrated phases and as void fillers to improve structural compaction. This dual effect accelerates hydration, increases hydrated phase content, and significantly enhances compressive strength and structural density.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"192 \",\"pages\":\"Article 113608\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825003162\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825003162","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced early hydration and mechanical properties of cement-based materials with exfoliated layered double hydroxide
This study investigates the preparation and performance of ExLDH, synthesized from Ca-Al layered double hydroxide (Ca-Al LDH) and polymethylmethacrylate (PMMA), as a cement additive to accelerate early hydration and enhance early strength in cement-based materials. The synthesized Ca-Al/PMMA LDH was characterized using X-ray diffraction (XRD), ATR-FTIR, SEM, TEM, BET surface area analysis, and dynamic light scattering (DLS). The composite incorporated into Portland cement at 1, 2, and 3 wt. % concentrations. Isothermal calorimetry assessed hydration heat over 72 h, while microstructural evaluation employed QXRD, ATR-FTIR, TGA-DTA, SEM, and water vapor sorption tests. Mechanical properties were evaluated through compressive and flexural strength tests.
Results confirmed the successful fabrication of ExLDH micro/nano-composites, which serve a dual role in the cement matrix: acting as nucleation sites for hydrated phases and as void fillers to improve structural compaction. This dual effect accelerates hydration, increases hydrated phase content, and significantly enhances compressive strength and structural density.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.