VectorMamba:通过向量表示和状态空间建模增强点云分析

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Zhicheng Wen
{"title":"VectorMamba:通过向量表示和状态空间建模增强点云分析","authors":"Zhicheng Wen","doi":"10.1016/j.cag.2025.104255","DOIUrl":null,"url":null,"abstract":"<div><div>Point cloud data, despite its widespread adoption, poses significant challenges due to its sparsity and irregularity. Existing methods excel in capturing complex point cloud structures but struggle with local feature extraction and global modeling. To address these issues, we introduce VectorMamba, a novel 3D point cloud analysis network. VectorMamba employs a Vector-oriented Set Abstraction (VSA) method that integrates scalar, rotation, and scaling information into vector representations, enhancing local feature representation. Additionally, the Flash Residual MLP (FlaResMLP) module improves generalization and efficiency by leveraging anisotropic functions and explicit positional embeddings. To address global modeling challenges, we propose the PosMamba Block, a state-space-based module that incorporates positional encoding to preserve spatial information and mitigate the loss of geometric context in deeper layers. Experimental results on the ModelNet40 classification dataset, ShapeNetPart part segmentation dataset, and S3DIS semantic segmentation dataset demonstrate that VectorMamba outperforms baseline methods and achieves competitive performance compared to other approaches. The code and dataset are openly available at <span><span>github.com/Shadow581/VectorMamba</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"130 ","pages":"Article 104255"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VectorMamba: Enhancing point cloud analysis through vector representations and state space modeling\",\"authors\":\"Zhicheng Wen\",\"doi\":\"10.1016/j.cag.2025.104255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Point cloud data, despite its widespread adoption, poses significant challenges due to its sparsity and irregularity. Existing methods excel in capturing complex point cloud structures but struggle with local feature extraction and global modeling. To address these issues, we introduce VectorMamba, a novel 3D point cloud analysis network. VectorMamba employs a Vector-oriented Set Abstraction (VSA) method that integrates scalar, rotation, and scaling information into vector representations, enhancing local feature representation. Additionally, the Flash Residual MLP (FlaResMLP) module improves generalization and efficiency by leveraging anisotropic functions and explicit positional embeddings. To address global modeling challenges, we propose the PosMamba Block, a state-space-based module that incorporates positional encoding to preserve spatial information and mitigate the loss of geometric context in deeper layers. Experimental results on the ModelNet40 classification dataset, ShapeNetPart part segmentation dataset, and S3DIS semantic segmentation dataset demonstrate that VectorMamba outperforms baseline methods and achieves competitive performance compared to other approaches. The code and dataset are openly available at <span><span>github.com/Shadow581/VectorMamba</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"130 \",\"pages\":\"Article 104255\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849325000962\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325000962","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

尽管点云数据被广泛采用,但由于其稀疏性和不规则性,它带来了重大挑战。现有方法在捕获复杂点云结构方面表现优异,但在局部特征提取和全局建模方面存在困难。为了解决这些问题,我们引入了VectorMamba,一个新颖的三维点云分析网络。VectorMamba采用面向向量的集合抽象(vector -oriented Set Abstraction, VSA)方法,将标量、旋转和缩放信息集成到向量表示中,增强了局部特征表示。此外,Flash残差MLP (FlaResMLP)模块通过利用各向异性函数和显式位置嵌入来提高泛化和效率。为了解决全局建模的挑战,我们提出了PosMamba块,这是一个基于状态空间的模块,它包含位置编码以保存空间信息并减轻更深层次中几何上下文的丢失。在ModelNet40分类数据集、ShapeNetPart零件分割数据集和S3DIS语义分割数据集上的实验结果表明,VectorMamba优于基线方法,与其他方法相比具有竞争力。代码和数据集可在github.com/Shadow581/VectorMamba上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VectorMamba: Enhancing point cloud analysis through vector representations and state space modeling
Point cloud data, despite its widespread adoption, poses significant challenges due to its sparsity and irregularity. Existing methods excel in capturing complex point cloud structures but struggle with local feature extraction and global modeling. To address these issues, we introduce VectorMamba, a novel 3D point cloud analysis network. VectorMamba employs a Vector-oriented Set Abstraction (VSA) method that integrates scalar, rotation, and scaling information into vector representations, enhancing local feature representation. Additionally, the Flash Residual MLP (FlaResMLP) module improves generalization and efficiency by leveraging anisotropic functions and explicit positional embeddings. To address global modeling challenges, we propose the PosMamba Block, a state-space-based module that incorporates positional encoding to preserve spatial information and mitigate the loss of geometric context in deeper layers. Experimental results on the ModelNet40 classification dataset, ShapeNetPart part segmentation dataset, and S3DIS semantic segmentation dataset demonstrate that VectorMamba outperforms baseline methods and achieves competitive performance compared to other approaches. The code and dataset are openly available at github.com/Shadow581/VectorMamba.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信