S.K. Singh , Y.M. Camejo , M.A. Avila , M. Cabrera-Baez , J. Munevar
{"title":"化学负压对掺杂cd的GdCo2Zn20单晶磁性能的影响","authors":"S.K. Singh , Y.M. Camejo , M.A. Avila , M. Cabrera-Baez , J. Munevar","doi":"10.1016/j.physb.2025.417399","DOIUrl":null,"url":null,"abstract":"<div><div>The negative chemical pressure effect on the magnetic properties of the flux-grown GdCo<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Zn<span><math><msub><mrow></mrow><mrow><mn>20</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Cd<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> single crystals (<span><math><mrow><mi>x</mi><mo>=</mo><mn>0</mn><mtext>–</mtext><mn>1</mn><mo>.</mo><mn>6</mn></mrow></math></span>) is studied. The Rietveld refinement of X-ray diffraction (XRD) patterns shows an increase of the lattice parameter. This is consistent with the substitution of Zn with relatively larger ionic size Cd atom and leading expansion of the Zn/Cd cage volume in unit cell. The specific heat, resistivity and magnetic susceptibility measurements show a minor increase of the antiferromagnetic transition temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>), of approximately 0.3 K for <span><math><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>6</mn></mrow></math></span>. The Curie–Weiss temperature (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>C</mi><mi>W</mi></mrow></msub></math></span>), extracted from the same analysis, increased from <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>5</mn><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span> K for <span><math><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow></math></span>; to <span><math><mrow><mo>−</mo><mn>14</mn><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mspace></mspace><mi>K</mi></mrow></math></span> for <span><math><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>6</mn></mrow></math></span>. These findings are further compared to the dramatic increase in Curie temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>) observed in Cd-doped GdFe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Zn<sub>20</sub>. The minor increase of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>C</mi><mi>W</mi></mrow></msub></math></span> is discussed and explained within the Ruderman–Kittel–Kasuya–Yosida model, where it is argued that the effective exchange coupling between Gd <span><math><mrow><mn>4</mn><mi>f</mi></mrow></math></span> moments and the <span><math><mi>s</mi></math></span>-band conduction electrons is increasing with Cd content.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417399"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of negative chemical pressure on the magnetic properties of Cd-doped GdCo2Zn20 single crystals\",\"authors\":\"S.K. Singh , Y.M. Camejo , M.A. Avila , M. Cabrera-Baez , J. Munevar\",\"doi\":\"10.1016/j.physb.2025.417399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The negative chemical pressure effect on the magnetic properties of the flux-grown GdCo<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Zn<span><math><msub><mrow></mrow><mrow><mn>20</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Cd<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> single crystals (<span><math><mrow><mi>x</mi><mo>=</mo><mn>0</mn><mtext>–</mtext><mn>1</mn><mo>.</mo><mn>6</mn></mrow></math></span>) is studied. The Rietveld refinement of X-ray diffraction (XRD) patterns shows an increase of the lattice parameter. This is consistent with the substitution of Zn with relatively larger ionic size Cd atom and leading expansion of the Zn/Cd cage volume in unit cell. The specific heat, resistivity and magnetic susceptibility measurements show a minor increase of the antiferromagnetic transition temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>), of approximately 0.3 K for <span><math><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>6</mn></mrow></math></span>. The Curie–Weiss temperature (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>C</mi><mi>W</mi></mrow></msub></math></span>), extracted from the same analysis, increased from <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>5</mn><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span> K for <span><math><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow></math></span>; to <span><math><mrow><mo>−</mo><mn>14</mn><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mspace></mspace><mi>K</mi></mrow></math></span> for <span><math><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>6</mn></mrow></math></span>. These findings are further compared to the dramatic increase in Curie temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>) observed in Cd-doped GdFe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Zn<sub>20</sub>. The minor increase of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>C</mi><mi>W</mi></mrow></msub></math></span> is discussed and explained within the Ruderman–Kittel–Kasuya–Yosida model, where it is argued that the effective exchange coupling between Gd <span><math><mrow><mn>4</mn><mi>f</mi></mrow></math></span> moments and the <span><math><mi>s</mi></math></span>-band conduction electrons is increasing with Cd content.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"714 \",\"pages\":\"Article 417399\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625005162\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625005162","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Effect of negative chemical pressure on the magnetic properties of Cd-doped GdCo2Zn20 single crystals
The negative chemical pressure effect on the magnetic properties of the flux-grown GdCoZnCd single crystals () is studied. The Rietveld refinement of X-ray diffraction (XRD) patterns shows an increase of the lattice parameter. This is consistent with the substitution of Zn with relatively larger ionic size Cd atom and leading expansion of the Zn/Cd cage volume in unit cell. The specific heat, resistivity and magnetic susceptibility measurements show a minor increase of the antiferromagnetic transition temperature (), of approximately 0.3 K for . The Curie–Weiss temperature (), extracted from the same analysis, increased from K for ; to for . These findings are further compared to the dramatic increase in Curie temperature () observed in Cd-doped GdFeZn20. The minor increase of and is discussed and explained within the Ruderman–Kittel–Kasuya–Yosida model, where it is argued that the effective exchange coupling between Gd moments and the -band conduction electrons is increasing with Cd content.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces