在Rashba自旋轨道相互作用和电磁波存在下单层石墨烯的光电导和极化

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
A. Naifar , C.A. Duque , K. Hasanirokh
{"title":"在Rashba自旋轨道相互作用和电磁波存在下单层石墨烯的光电导和极化","authors":"A. Naifar ,&nbsp;C.A. Duque ,&nbsp;K. Hasanirokh","doi":"10.1016/j.physb.2025.417495","DOIUrl":null,"url":null,"abstract":"<div><div>We present a theoretical investigation of the optical conductivity of graphene layer in the presence of Rashba spin-orbit coupling (SOC). By employing the massless Dirac description, we evaluate the combined impacts of the Rashba strength and chemical potential on the inter and intra conductivity within the sample. Our numerical findings revealed that the conductivity and polarization are highly sensitive to these pivotal highlighted parameters. Real and imaginary parts of both spin-dependent optical conductivity <span><math><mrow><msup><mi>σ</mi><mrow><mi>i</mi><mi>n</mi><mi>t</mi><mi>r</mi><mi>a</mi></mrow></msup></mrow></math></span> and <span><math><mrow><msup><mi>σ</mi><mrow><mi>i</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi></mrow></msup></mrow></math></span> behave differently with respect to the relevant managing factors and could be fine-tuned to advance spintronics. The imaginary parts exhibited strong sensitivity to changes in both λ and μ. Moreover, the dynamic response of the inspected system, particularly in terms of energy absorption and dissipation, is heavily influenced by the modulation of (λ, μ) pair. More importantly, the computational outcomes evidenced that the optical characteristics of this system differ significantly from those of a graphene layer due to the Rashba coupling incorporation. Spin-dependent optical conductivity can unlock new functionalities and enhance the performance of graphene in both spin-based electronics and light-based technologies, offering promising pathways for next-generation devices.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417495"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical conductance and polarization of the monolayer graphene in the presence of Rashba spin orbit interaction and electromagnetic wave\",\"authors\":\"A. Naifar ,&nbsp;C.A. Duque ,&nbsp;K. Hasanirokh\",\"doi\":\"10.1016/j.physb.2025.417495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a theoretical investigation of the optical conductivity of graphene layer in the presence of Rashba spin-orbit coupling (SOC). By employing the massless Dirac description, we evaluate the combined impacts of the Rashba strength and chemical potential on the inter and intra conductivity within the sample. Our numerical findings revealed that the conductivity and polarization are highly sensitive to these pivotal highlighted parameters. Real and imaginary parts of both spin-dependent optical conductivity <span><math><mrow><msup><mi>σ</mi><mrow><mi>i</mi><mi>n</mi><mi>t</mi><mi>r</mi><mi>a</mi></mrow></msup></mrow></math></span> and <span><math><mrow><msup><mi>σ</mi><mrow><mi>i</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi></mrow></msup></mrow></math></span> behave differently with respect to the relevant managing factors and could be fine-tuned to advance spintronics. The imaginary parts exhibited strong sensitivity to changes in both λ and μ. Moreover, the dynamic response of the inspected system, particularly in terms of energy absorption and dissipation, is heavily influenced by the modulation of (λ, μ) pair. More importantly, the computational outcomes evidenced that the optical characteristics of this system differ significantly from those of a graphene layer due to the Rashba coupling incorporation. Spin-dependent optical conductivity can unlock new functionalities and enhance the performance of graphene in both spin-based electronics and light-based technologies, offering promising pathways for next-generation devices.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"714 \",\"pages\":\"Article 417495\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092145262500612X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092145262500612X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文对Rashba自旋轨道耦合(SOC)存在下石墨烯层的光学导电性进行了理论研究。通过采用无质量狄拉克描述,我们评估了Rashba强度和化学势对样品内部和内部电导率的综合影响。我们的数值结果表明,电导率和极化对这些关键的突出参数高度敏感。自旋相关光电导率σintra和σinter的实部和虚部在相关管理因素方面表现不同,可以进行微调以推进自旋电子学。虚部对λ和μ的变化都表现出很强的敏感性。此外,被测系统的动态响应,特别是能量的吸收和耗散,很大程度上受(λ, μ)对调制的影响。更重要的是,计算结果证明,由于Rashba耦合的加入,该系统的光学特性与石墨烯层的光学特性有很大的不同。自旋相关的光学导电性可以解锁新的功能,并增强石墨烯在自旋电子和光基技术中的性能,为下一代器件提供了有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical conductance and polarization of the monolayer graphene in the presence of Rashba spin orbit interaction and electromagnetic wave
We present a theoretical investigation of the optical conductivity of graphene layer in the presence of Rashba spin-orbit coupling (SOC). By employing the massless Dirac description, we evaluate the combined impacts of the Rashba strength and chemical potential on the inter and intra conductivity within the sample. Our numerical findings revealed that the conductivity and polarization are highly sensitive to these pivotal highlighted parameters. Real and imaginary parts of both spin-dependent optical conductivity σintra and σinter behave differently with respect to the relevant managing factors and could be fine-tuned to advance spintronics. The imaginary parts exhibited strong sensitivity to changes in both λ and μ. Moreover, the dynamic response of the inspected system, particularly in terms of energy absorption and dissipation, is heavily influenced by the modulation of (λ, μ) pair. More importantly, the computational outcomes evidenced that the optical characteristics of this system differ significantly from those of a graphene layer due to the Rashba coupling incorporation. Spin-dependent optical conductivity can unlock new functionalities and enhance the performance of graphene in both spin-based electronics and light-based technologies, offering promising pathways for next-generation devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信