{"title":"hcp-M2/Sin超晶格中接口调制的大MAE","authors":"Jijun Xue, Shixin Hu, Xiaoying Wang, Hua Pang","doi":"10.1016/j.physb.2025.417477","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetocrystalline anisotropy (MCA) plays a crucial role in magnetic materials. Achieving high MCA has long been a challenging problem, especially for 3d transition metals. In this paper, we construct a hexagonal close-packed (<em>hcp</em>) M<sub>2</sub>/Si<sub><em>n</em></sub> (M = Co, Fe) superlattice with a space group switched by the parity of <em>n</em> between P-3m1 (even <em>n</em>) and <em>P</em>6<sub>3</sub>/<em>mmc</em> (odd <em>n</em>). Via density-functional theory, we demonstrate the dependence of the electronic structure near the Fermi energy on the crystal symmetry, which induces quantum oscillations in the strength of M/Si interface coupling and magnetocrystalline anisotropy energy (MAE) with the parity of <em>n</em>. The local environment of the Fe atom has C<sub>3v</sub> symmetry at odd <em>n</em>, giving rise to orbital degeneracy of <span><math><mrow><msub><mi>d</mi><mrow><mi>x</mi><mi>y</mi></mrow></msub><mo>/</mo><msub><mi>d</mi><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><msup><mi>y</mi><mn>2</mn></msup></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mi>d</mi><mrow><mi>x</mi><mi>z</mi></mrow></msub><mo>/</mo><msub><mi>d</mi><mrow><mi>y</mi><mi>z</mi></mrow></msub></mrow></math></span>, leading to perpendicular MAE and enhancing the spin-orbit coupling matrix element. This mechanism yields an MAE of −8.54 meV/f.u. in <em>hcp</em>- Fe<sub>2</sub>/Si<sub>7</sub>, surpassing bulk Fe by two orders and rivaling L1<sub>0</sub> Fe-Pt alloys (∼1 meV/f.u.). In addition, the perpendicular MAE remains when the lattice distortion Δ(<em>c</em>/<em>a</em>) ranges from −3 % to 2 %, implying potential thermal stability if used as nanodevices. Our C<sub>3</sub>ᵥ symmetry-preserving interfacial engineering strategy provides a heavy-element-free route to achieving highly anisotropic magnets.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417477"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface-modulated large MAE in hcp-M2/Sin superlattice\",\"authors\":\"Jijun Xue, Shixin Hu, Xiaoying Wang, Hua Pang\",\"doi\":\"10.1016/j.physb.2025.417477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetocrystalline anisotropy (MCA) plays a crucial role in magnetic materials. Achieving high MCA has long been a challenging problem, especially for 3d transition metals. In this paper, we construct a hexagonal close-packed (<em>hcp</em>) M<sub>2</sub>/Si<sub><em>n</em></sub> (M = Co, Fe) superlattice with a space group switched by the parity of <em>n</em> between P-3m1 (even <em>n</em>) and <em>P</em>6<sub>3</sub>/<em>mmc</em> (odd <em>n</em>). Via density-functional theory, we demonstrate the dependence of the electronic structure near the Fermi energy on the crystal symmetry, which induces quantum oscillations in the strength of M/Si interface coupling and magnetocrystalline anisotropy energy (MAE) with the parity of <em>n</em>. The local environment of the Fe atom has C<sub>3v</sub> symmetry at odd <em>n</em>, giving rise to orbital degeneracy of <span><math><mrow><msub><mi>d</mi><mrow><mi>x</mi><mi>y</mi></mrow></msub><mo>/</mo><msub><mi>d</mi><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><msup><mi>y</mi><mn>2</mn></msup></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mi>d</mi><mrow><mi>x</mi><mi>z</mi></mrow></msub><mo>/</mo><msub><mi>d</mi><mrow><mi>y</mi><mi>z</mi></mrow></msub></mrow></math></span>, leading to perpendicular MAE and enhancing the spin-orbit coupling matrix element. This mechanism yields an MAE of −8.54 meV/f.u. in <em>hcp</em>- Fe<sub>2</sub>/Si<sub>7</sub>, surpassing bulk Fe by two orders and rivaling L1<sub>0</sub> Fe-Pt alloys (∼1 meV/f.u.). In addition, the perpendicular MAE remains when the lattice distortion Δ(<em>c</em>/<em>a</em>) ranges from −3 % to 2 %, implying potential thermal stability if used as nanodevices. Our C<sub>3</sub>ᵥ symmetry-preserving interfacial engineering strategy provides a heavy-element-free route to achieving highly anisotropic magnets.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"714 \",\"pages\":\"Article 417477\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625005940\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625005940","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Interface-modulated large MAE in hcp-M2/Sin superlattice
Magnetocrystalline anisotropy (MCA) plays a crucial role in magnetic materials. Achieving high MCA has long been a challenging problem, especially for 3d transition metals. In this paper, we construct a hexagonal close-packed (hcp) M2/Sin (M = Co, Fe) superlattice with a space group switched by the parity of n between P-3m1 (even n) and P63/mmc (odd n). Via density-functional theory, we demonstrate the dependence of the electronic structure near the Fermi energy on the crystal symmetry, which induces quantum oscillations in the strength of M/Si interface coupling and magnetocrystalline anisotropy energy (MAE) with the parity of n. The local environment of the Fe atom has C3v symmetry at odd n, giving rise to orbital degeneracy of and , leading to perpendicular MAE and enhancing the spin-orbit coupling matrix element. This mechanism yields an MAE of −8.54 meV/f.u. in hcp- Fe2/Si7, surpassing bulk Fe by two orders and rivaling L10 Fe-Pt alloys (∼1 meV/f.u.). In addition, the perpendicular MAE remains when the lattice distortion Δ(c/a) ranges from −3 % to 2 %, implying potential thermal stability if used as nanodevices. Our C3ᵥ symmetry-preserving interfacial engineering strategy provides a heavy-element-free route to achieving highly anisotropic magnets.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces