{"title":"求解一维欧拉-伯努利梁的混合虚元法和深度学习方法","authors":"Paulo Akira F. Enabe, Rodrigo Provasi","doi":"10.1016/j.amc.2025.129600","DOIUrl":null,"url":null,"abstract":"<div><div>A hybrid framework integrating the Virtual Element Method (VEM) with deep learning is presented as an initial step toward developing efficient and flexible numerical models for one-dimensional Euler-Bernoulli beams. The primary aim is to explore a data-driven surrogate model capable of predicting displacement fields across varying material and geometric parameters while maintaining computational efficiency. Building upon VEM's ability to handle higher-order polynomials and non-conforming discretizations, the method offers a robust numerical foundation for structural mechanics. A neural network architecture is introduced to separately process nodal and material-specific data, effectively capturing complex interactions with minimal reliance on large datasets. To address challenges in training, the model incorporates Sobolev training and GradNorm techniques, ensuring balanced loss contributions and enhanced generalization. While this framework is in its early stages, it demonstrates the potential for further refinement and development into a scalable alternative to traditional methods. The proposed approach lays the groundwork for advancing numerical and data-driven techniques in beam modeling, offering a foundation for future research in structural mechanics.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"507 ","pages":"Article 129600"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid virtual element method and deep learning approach for solving one-dimensional Euler-Bernoulli beams\",\"authors\":\"Paulo Akira F. Enabe, Rodrigo Provasi\",\"doi\":\"10.1016/j.amc.2025.129600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A hybrid framework integrating the Virtual Element Method (VEM) with deep learning is presented as an initial step toward developing efficient and flexible numerical models for one-dimensional Euler-Bernoulli beams. The primary aim is to explore a data-driven surrogate model capable of predicting displacement fields across varying material and geometric parameters while maintaining computational efficiency. Building upon VEM's ability to handle higher-order polynomials and non-conforming discretizations, the method offers a robust numerical foundation for structural mechanics. A neural network architecture is introduced to separately process nodal and material-specific data, effectively capturing complex interactions with minimal reliance on large datasets. To address challenges in training, the model incorporates Sobolev training and GradNorm techniques, ensuring balanced loss contributions and enhanced generalization. While this framework is in its early stages, it demonstrates the potential for further refinement and development into a scalable alternative to traditional methods. The proposed approach lays the groundwork for advancing numerical and data-driven techniques in beam modeling, offering a foundation for future research in structural mechanics.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"507 \",\"pages\":\"Article 129600\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003261\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003261","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A hybrid virtual element method and deep learning approach for solving one-dimensional Euler-Bernoulli beams
A hybrid framework integrating the Virtual Element Method (VEM) with deep learning is presented as an initial step toward developing efficient and flexible numerical models for one-dimensional Euler-Bernoulli beams. The primary aim is to explore a data-driven surrogate model capable of predicting displacement fields across varying material and geometric parameters while maintaining computational efficiency. Building upon VEM's ability to handle higher-order polynomials and non-conforming discretizations, the method offers a robust numerical foundation for structural mechanics. A neural network architecture is introduced to separately process nodal and material-specific data, effectively capturing complex interactions with minimal reliance on large datasets. To address challenges in training, the model incorporates Sobolev training and GradNorm techniques, ensuring balanced loss contributions and enhanced generalization. While this framework is in its early stages, it demonstrates the potential for further refinement and development into a scalable alternative to traditional methods. The proposed approach lays the groundwork for advancing numerical and data-driven techniques in beam modeling, offering a foundation for future research in structural mechanics.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.