金属-有机框架(MIL-101Fe) -用于所有固态锂离子电池的复合聚合物电解质

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Zhenkun Wang , Lili Zheng , Zhuo Xu , Jing Shi , Zuoqiang Dai , Xichao Li
{"title":"金属-有机框架(MIL-101Fe) -用于所有固态锂离子电池的复合聚合物电解质","authors":"Zhenkun Wang ,&nbsp;Lili Zheng ,&nbsp;Zhuo Xu ,&nbsp;Jing Shi ,&nbsp;Zuoqiang Dai ,&nbsp;Xichao Li","doi":"10.1016/j.jpowsour.2025.237650","DOIUrl":null,"url":null,"abstract":"<div><div>Solid polymer electrolyte emerges as an attractive candidate for all solid-state lithium batteries (ASSLBs). Nevertheless, the drawbacks of low ionic conductivity and poor mechanical property hinder the commercial application. Herein, the metal-organic framework (MOFs) is introduced into polyethylene oxide (PEO) to produce composite polymer electrolytes (CPEs) for ASSLBs. It is disclosed that the MIL-101(Fe) with porous structure effectively lowers glass transition temperature, and restricts the migration of anions of PEO, resulting in high Li<sup>+</sup> transference number (0.47) and the significantly improved ionic conductivities of 4.78 × 10<sup>−3</sup> S cm<sup>−1</sup> at 80 °C. Moreover, the CPE with 10 <em>wt</em>% MIL-101(Fe) exhibits a widened electrochemical stability window (5.25 V), enhanced thermal stability to 380 °C and improved tensile strength of 0.62 MPa. The solid-state LiFePO<sub>4</sub>|10 <em>wt</em>% MOF/PEO|Li battery delivers an improved discharge capacity of 16a5.49 mAh g<sup>−1</sup> at 0.1C and 50 °C with a capacity retention of 87.9 % after 80 cycles. After cycling at a high current of 0.5C and 50 °C for 80 cycles, the battery delivers a capacity retention of 93.8 %. These results demonstrate that MIL-101(Fe) - incorporated PEO is a promising solid electrolyte for safe and long-life batteries.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"652 ","pages":"Article 237650"},"PeriodicalIF":7.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-organic framework (MIL-101Fe) - incorporated composite polymer electrolytes for all solid-state lithium-ion batteries\",\"authors\":\"Zhenkun Wang ,&nbsp;Lili Zheng ,&nbsp;Zhuo Xu ,&nbsp;Jing Shi ,&nbsp;Zuoqiang Dai ,&nbsp;Xichao Li\",\"doi\":\"10.1016/j.jpowsour.2025.237650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solid polymer electrolyte emerges as an attractive candidate for all solid-state lithium batteries (ASSLBs). Nevertheless, the drawbacks of low ionic conductivity and poor mechanical property hinder the commercial application. Herein, the metal-organic framework (MOFs) is introduced into polyethylene oxide (PEO) to produce composite polymer electrolytes (CPEs) for ASSLBs. It is disclosed that the MIL-101(Fe) with porous structure effectively lowers glass transition temperature, and restricts the migration of anions of PEO, resulting in high Li<sup>+</sup> transference number (0.47) and the significantly improved ionic conductivities of 4.78 × 10<sup>−3</sup> S cm<sup>−1</sup> at 80 °C. Moreover, the CPE with 10 <em>wt</em>% MIL-101(Fe) exhibits a widened electrochemical stability window (5.25 V), enhanced thermal stability to 380 °C and improved tensile strength of 0.62 MPa. The solid-state LiFePO<sub>4</sub>|10 <em>wt</em>% MOF/PEO|Li battery delivers an improved discharge capacity of 16a5.49 mAh g<sup>−1</sup> at 0.1C and 50 °C with a capacity retention of 87.9 % after 80 cycles. After cycling at a high current of 0.5C and 50 °C for 80 cycles, the battery delivers a capacity retention of 93.8 %. These results demonstrate that MIL-101(Fe) - incorporated PEO is a promising solid electrolyte for safe and long-life batteries.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"652 \",\"pages\":\"Article 237650\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325014867\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325014867","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固体聚合物电解质成为所有固态锂电池(ASSLBs)的有吸引力的候选者。然而,离子电导率低和机械性能差的缺点阻碍了其商业化应用。本文将金属有机骨架(MOFs)引入聚氧化物(PEO)中,制备用于asslb的复合聚合物电解质(cpe)。具有多孔结构的MIL-101(Fe)有效降低了玻璃化转变温度,限制了PEO阴离子的迁移,使其具有较高的Li+迁移数(0.47),在80℃时离子电导率显著提高,达到4.78 × 10−3 S cm−1。此外,添加10 wt% MIL-101(Fe)的CPE具有更宽的电化学稳定窗口(5.25 V),提高了380°C的热稳定性,提高了0.62 MPa的拉伸强度。固态LiFePO4|锂电池在0.1C和50°C下的放电容量为16a5.49 mAh g - 1,经过80次循环后容量保持率为87.9%。在0.5C和50°C的高电流下循环80次后,电池的容量保持率为93.8%。这些结果表明MIL-101(Fe) - PEO是一种很有前途的安全、长寿命电池固体电解质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metal-organic framework (MIL-101Fe) - incorporated composite polymer electrolytes for all solid-state lithium-ion batteries

Metal-organic framework (MIL-101Fe) - incorporated composite polymer electrolytes for all solid-state lithium-ion batteries
Solid polymer electrolyte emerges as an attractive candidate for all solid-state lithium batteries (ASSLBs). Nevertheless, the drawbacks of low ionic conductivity and poor mechanical property hinder the commercial application. Herein, the metal-organic framework (MOFs) is introduced into polyethylene oxide (PEO) to produce composite polymer electrolytes (CPEs) for ASSLBs. It is disclosed that the MIL-101(Fe) with porous structure effectively lowers glass transition temperature, and restricts the migration of anions of PEO, resulting in high Li+ transference number (0.47) and the significantly improved ionic conductivities of 4.78 × 10−3 S cm−1 at 80 °C. Moreover, the CPE with 10 wt% MIL-101(Fe) exhibits a widened electrochemical stability window (5.25 V), enhanced thermal stability to 380 °C and improved tensile strength of 0.62 MPa. The solid-state LiFePO4|10 wt% MOF/PEO|Li battery delivers an improved discharge capacity of 16a5.49 mAh g−1 at 0.1C and 50 °C with a capacity retention of 87.9 % after 80 cycles. After cycling at a high current of 0.5C and 50 °C for 80 cycles, the battery delivers a capacity retention of 93.8 %. These results demonstrate that MIL-101(Fe) - incorporated PEO is a promising solid electrolyte for safe and long-life batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信