2014-2024年辽东湾海冰时空变化及其气象驱动因素

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Kai Pan , Jun Song , Yanzhao Fu , Junru Guo , Gang Bai , Yu Cai
{"title":"2014-2024年辽东湾海冰时空变化及其气象驱动因素","authors":"Kai Pan ,&nbsp;Jun Song ,&nbsp;Yanzhao Fu ,&nbsp;Junru Guo ,&nbsp;Gang Bai ,&nbsp;Yu Cai","doi":"10.1016/j.oceaneng.2025.121770","DOIUrl":null,"url":null,"abstract":"<div><div>Sea ice, an essential part of the Earth’s climate system, significantly impacts global climate and coastal infrastructure. While most of the focus is on polar regions, mid-latitude sea ice dynamics remain less understood. This study investigates sea ice variability in Liaodong Bay from 2014 to 2024 by combining remote sensing, field observations, and statistical analyses. The sea ice conditions in the past decade are relatively stable, with an average duration of 88 days and a maximum area of less than <span><math><mrow><mn>10</mn><mspace></mspace><mn>000</mn><mspace></mspace><mspace></mspace><msup><mrow><mrow><mi>k</mi></mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span>. However, the winter of 2023–2024 experienced record-high anomalies, including premature ice expansion, peak coverage, and late-season resurgence. The dynamics were driven by localized thermal inertia (4-day temperature memory, <span><math><mrow><mi>r</mi><mo>=</mo><mo>−</mo><mn>0.55</mn></mrow></math></span>) and wind-ice coupling (northeasterly winds <span><math><mrow><mo>&gt;</mo><mn>10</mn></mrow></math></span> m/s). Large-scale climate indices, such as the Arctic Oscillation (AO), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), North Pacific (NP), and Pacific Decadal Oscillation (PDO), showed low correlations (<span><math><mrow><mo>|</mo><mi>r</mi><mo>|</mo><mo>&lt;</mo><mn>0.25</mn></mrow></math></span>), confirming a locally dominated ice system. The extreme ice growth in 2023–2024 was triggered by record cold snaps (<span><math><mrow><mo>−</mo><mn>23</mn><mo>.</mo><msup><mn>5</mn><mo>∘</mo></msup></mrow></math></span>C) and oceanic heat deficit (<span><math><mrow><mo>−</mo><mn>1</mn><mo>.</mo><msup><mn>2</mn><mo>∘</mo></msup></mrow></math></span>C below decadal mean SST), which showed the bay’s vulnerability to compound effect of climate change, despite its locally dominated ice dynamics. The conclusion of this study can provide references for coastal engineering and disaster prevention.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"336 ","pages":"Article 121770"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal variability of sea ice and its meteorological drivers in Liaodong Bay, China (2014–2024)\",\"authors\":\"Kai Pan ,&nbsp;Jun Song ,&nbsp;Yanzhao Fu ,&nbsp;Junru Guo ,&nbsp;Gang Bai ,&nbsp;Yu Cai\",\"doi\":\"10.1016/j.oceaneng.2025.121770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sea ice, an essential part of the Earth’s climate system, significantly impacts global climate and coastal infrastructure. While most of the focus is on polar regions, mid-latitude sea ice dynamics remain less understood. This study investigates sea ice variability in Liaodong Bay from 2014 to 2024 by combining remote sensing, field observations, and statistical analyses. The sea ice conditions in the past decade are relatively stable, with an average duration of 88 days and a maximum area of less than <span><math><mrow><mn>10</mn><mspace></mspace><mn>000</mn><mspace></mspace><mspace></mspace><msup><mrow><mrow><mi>k</mi></mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span>. However, the winter of 2023–2024 experienced record-high anomalies, including premature ice expansion, peak coverage, and late-season resurgence. The dynamics were driven by localized thermal inertia (4-day temperature memory, <span><math><mrow><mi>r</mi><mo>=</mo><mo>−</mo><mn>0.55</mn></mrow></math></span>) and wind-ice coupling (northeasterly winds <span><math><mrow><mo>&gt;</mo><mn>10</mn></mrow></math></span> m/s). Large-scale climate indices, such as the Arctic Oscillation (AO), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), North Pacific (NP), and Pacific Decadal Oscillation (PDO), showed low correlations (<span><math><mrow><mo>|</mo><mi>r</mi><mo>|</mo><mo>&lt;</mo><mn>0.25</mn></mrow></math></span>), confirming a locally dominated ice system. The extreme ice growth in 2023–2024 was triggered by record cold snaps (<span><math><mrow><mo>−</mo><mn>23</mn><mo>.</mo><msup><mn>5</mn><mo>∘</mo></msup></mrow></math></span>C) and oceanic heat deficit (<span><math><mrow><mo>−</mo><mn>1</mn><mo>.</mo><msup><mn>2</mn><mo>∘</mo></msup></mrow></math></span>C below decadal mean SST), which showed the bay’s vulnerability to compound effect of climate change, despite its locally dominated ice dynamics. The conclusion of this study can provide references for coastal engineering and disaster prevention.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"336 \",\"pages\":\"Article 121770\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801825014763\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825014763","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

海冰是地球气候系统的重要组成部分,对全球气候和沿海基础设施产生重大影响。虽然大部分的焦点都集中在极地地区,但对中纬度海冰动态的了解仍然很少。采用遥感、野外观测和统计分析相结合的方法,对2014 - 2024年辽东湾海冰变化进行了研究。近10年海冰状况相对稳定,平均持续时间为88天,最大面积小于1万平方公里。然而,2023-2024年冬季经历了创纪录的异常,包括过早的冰扩张、高峰覆盖和季末的复苏。局域热惯性(4天温度记忆,r= - 0.55)和风-冰耦合(东北风>;10 m/s)驱动了该动力学。北极涛动(AO)、北大西洋涛动(NAO)、厄尔尼诺Niño-Southern涛动(ENSO)、北太平洋(NP)和太平洋年代际涛动(PDO)等大尺度气候指数呈低相关(|或|<;0.25),证实了局地主导的冰系统。2023年至2024年的极端冰增长是由创纪录的寒流(−23.5°C)和海洋热亏(−1.2°C,低于年代际平均海温)引发的,这表明该海湾易受气候变化的复合效应影响,尽管其局部冰动力占主导地位。研究结论可为海岸工程和防灾提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal variability of sea ice and its meteorological drivers in Liaodong Bay, China (2014–2024)
Sea ice, an essential part of the Earth’s climate system, significantly impacts global climate and coastal infrastructure. While most of the focus is on polar regions, mid-latitude sea ice dynamics remain less understood. This study investigates sea ice variability in Liaodong Bay from 2014 to 2024 by combining remote sensing, field observations, and statistical analyses. The sea ice conditions in the past decade are relatively stable, with an average duration of 88 days and a maximum area of less than 10000km2. However, the winter of 2023–2024 experienced record-high anomalies, including premature ice expansion, peak coverage, and late-season resurgence. The dynamics were driven by localized thermal inertia (4-day temperature memory, r=0.55) and wind-ice coupling (northeasterly winds >10 m/s). Large-scale climate indices, such as the Arctic Oscillation (AO), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), North Pacific (NP), and Pacific Decadal Oscillation (PDO), showed low correlations (|r|<0.25), confirming a locally dominated ice system. The extreme ice growth in 2023–2024 was triggered by record cold snaps (23.5C) and oceanic heat deficit (1.2C below decadal mean SST), which showed the bay’s vulnerability to compound effect of climate change, despite its locally dominated ice dynamics. The conclusion of this study can provide references for coastal engineering and disaster prevention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信