标准正交基并中的稀疏表示的新结果

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Tao Zhang , Gennian Ge
{"title":"标准正交基并中的稀疏表示的新结果","authors":"Tao Zhang ,&nbsp;Gennian Ge","doi":"10.1016/j.acha.2025.101786","DOIUrl":null,"url":null,"abstract":"<div><div>The problem of sparse representation has significant applications in signal processing. The spark of a dictionary plays a crucial role in the study of sparse representation. Donoho and Elad initially explored the spark, and they provided a general lower bound. When the dictionary is a union of several orthonormal bases, Gribonval and Nielsen presented an improved lower bound for spark. In this paper, we introduce a new construction of dictionary, achieving the spark bound given by Gribonval and Nielsen. More precisely, let <em>q</em> be a power of 2, we show that for any positive integer <em>t</em>, there exists a dictionary in <span><math><msup><mrow><mi>R</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msup></mrow></msup></math></span>, which is a union of <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> orthonormal bases, such that the spark of the dictionary attains Gribonval-Nielsen's bound. Our result extends previously best known result from <span><math><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> to arbitrarily positive integer <em>t</em>, and our construction is technically different from previous ones. Their method is more combinatorial, while ours is algebraic, which is more general.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101786"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New results on sparse representations in unions of orthonormal bases\",\"authors\":\"Tao Zhang ,&nbsp;Gennian Ge\",\"doi\":\"10.1016/j.acha.2025.101786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The problem of sparse representation has significant applications in signal processing. The spark of a dictionary plays a crucial role in the study of sparse representation. Donoho and Elad initially explored the spark, and they provided a general lower bound. When the dictionary is a union of several orthonormal bases, Gribonval and Nielsen presented an improved lower bound for spark. In this paper, we introduce a new construction of dictionary, achieving the spark bound given by Gribonval and Nielsen. More precisely, let <em>q</em> be a power of 2, we show that for any positive integer <em>t</em>, there exists a dictionary in <span><math><msup><mrow><mi>R</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msup></mrow></msup></math></span>, which is a union of <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> orthonormal bases, such that the spark of the dictionary attains Gribonval-Nielsen's bound. Our result extends previously best known result from <span><math><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> to arbitrarily positive integer <em>t</em>, and our construction is technically different from previous ones. Their method is more combinatorial, while ours is algebraic, which is more general.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101786\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000405\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000405","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

稀疏表示问题在信号处理中有着重要的应用。字典的火花在稀疏表示的研究中起着至关重要的作用。多诺霍和埃拉德最初探索了火星,他们提供了一个一般的下限。当字典是几个标准正交基的并集时,Gribonval和Nielsen提出了一个改进的spark下界。本文引入了一种新的字典结构,实现了Gribonval和Nielsen给出的火花界。更精确地说,设q为2的幂,我们证明了对于任意正整数t,在Rq2t中存在一个字典,它是q+1个正交基的并,使得字典的火花达到Gribonval-Nielsen界。我们的结果将以前最著名的结果从t=1,2扩展到任意正整数t,并且我们的构造在技术上与以前的构造不同。他们的方法是组合的,而我们的方法是代数的,更一般。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New results on sparse representations in unions of orthonormal bases
The problem of sparse representation has significant applications in signal processing. The spark of a dictionary plays a crucial role in the study of sparse representation. Donoho and Elad initially explored the spark, and they provided a general lower bound. When the dictionary is a union of several orthonormal bases, Gribonval and Nielsen presented an improved lower bound for spark. In this paper, we introduce a new construction of dictionary, achieving the spark bound given by Gribonval and Nielsen. More precisely, let q be a power of 2, we show that for any positive integer t, there exists a dictionary in Rq2t, which is a union of q+1 orthonormal bases, such that the spark of the dictionary attains Gribonval-Nielsen's bound. Our result extends previously best known result from t=1,2 to arbitrarily positive integer t, and our construction is technically different from previous ones. Their method is more combinatorial, while ours is algebraic, which is more general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信