群图上的芯片发射

IF 0.7 3区 数学 Q2 MATHEMATICS
Margaret Meyer, Dmitry Zakharov
{"title":"群图上的芯片发射","authors":"Margaret Meyer,&nbsp;Dmitry Zakharov","doi":"10.1016/j.disc.2025.114631","DOIUrl":null,"url":null,"abstract":"<div><div>We define the Laplacian matrix and the Jacobian group of a finite graph of groups. We prove analogues of the matrix tree theorem and the class number formula for the order of the Jacobian of a graph of groups. Given a group <em>G</em> acting on a graph <em>X</em>, we define natural pushforward and pullback maps between the Jacobian groups of <em>X</em> and the quotient graph of groups <span><math><mi>X</mi><mo>/</mo><mo>/</mo><mi>G</mi></math></span>. For the case <span><math><mi>G</mi><mo>=</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi></math></span>, we also prove a combinatorial formula for the order of the kernel of the pushforward map.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114631"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chip-firing on graphs of groups\",\"authors\":\"Margaret Meyer,&nbsp;Dmitry Zakharov\",\"doi\":\"10.1016/j.disc.2025.114631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We define the Laplacian matrix and the Jacobian group of a finite graph of groups. We prove analogues of the matrix tree theorem and the class number formula for the order of the Jacobian of a graph of groups. Given a group <em>G</em> acting on a graph <em>X</em>, we define natural pushforward and pullback maps between the Jacobian groups of <em>X</em> and the quotient graph of groups <span><math><mi>X</mi><mo>/</mo><mo>/</mo><mi>G</mi></math></span>. For the case <span><math><mi>G</mi><mo>=</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi></math></span>, we also prove a combinatorial formula for the order of the kernel of the pushforward map.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114631\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002390\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002390","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

定义了有限群图的拉普拉斯矩阵和雅可比群。证明了群图的雅可比矩阵阶的矩阵树定理和类数公式的类似性质。给定作用于图X上的群G,我们定义了X的雅可比群与群X//G的商图之间的自然推回映射。对于G=Z/2Z的情况,我们还证明了前推映射核阶的一个组合公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chip-firing on graphs of groups
We define the Laplacian matrix and the Jacobian group of a finite graph of groups. We prove analogues of the matrix tree theorem and the class number formula for the order of the Jacobian of a graph of groups. Given a group G acting on a graph X, we define natural pushforward and pullback maps between the Jacobian groups of X and the quotient graph of groups X//G. For the case G=Z/2Z, we also prove a combinatorial formula for the order of the kernel of the pushforward map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信