基于超像素特征金字塔网络的可扩展单目三维探测器

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dongliang Ma , Fang Zhao , Ye Li , Xin Qu , Xin Jiang , Hao Wu , Xi Chen , Min Liu
{"title":"基于超像素特征金字塔网络的可扩展单目三维探测器","authors":"Dongliang Ma ,&nbsp;Fang Zhao ,&nbsp;Ye Li ,&nbsp;Xin Qu ,&nbsp;Xin Jiang ,&nbsp;Hao Wu ,&nbsp;Xi Chen ,&nbsp;Min Liu","doi":"10.1016/j.asoc.2025.113389","DOIUrl":null,"url":null,"abstract":"<div><div>Monocular 3D object detection plays a pivotal role in vehicle perception systems. Current methods frequently struggle to effectively extract scene-level semantic information, and the availability of monocular 3D detectors tailored to diverse embedded devices with varying computing power may still be limited. This paper introduces MonoYolo, a scalable detector designed for practicality and efficiency with varying resource constraints. In particular, we design a Superpixel Feature Pyramid Network (SFPN) that automatically groups pixels with similar attributes together. Experimental results on KITTI and nuScenes datasets showcase the advantageous performance of MonoYolo over superior monocular detectors for large models, while the lightweight model maintains real-time detection capabilities. Meanwhile, the proposed SFPN offers a seamless integration into existing image-only 3D detectors, presenting a plug-and-play solution for enhanced monocular 3D object detection performance.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"180 ","pages":"Article 113389"},"PeriodicalIF":7.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A scalable monocular 3D detector with Superpixel Feature Pyramid Network\",\"authors\":\"Dongliang Ma ,&nbsp;Fang Zhao ,&nbsp;Ye Li ,&nbsp;Xin Qu ,&nbsp;Xin Jiang ,&nbsp;Hao Wu ,&nbsp;Xi Chen ,&nbsp;Min Liu\",\"doi\":\"10.1016/j.asoc.2025.113389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monocular 3D object detection plays a pivotal role in vehicle perception systems. Current methods frequently struggle to effectively extract scene-level semantic information, and the availability of monocular 3D detectors tailored to diverse embedded devices with varying computing power may still be limited. This paper introduces MonoYolo, a scalable detector designed for practicality and efficiency with varying resource constraints. In particular, we design a Superpixel Feature Pyramid Network (SFPN) that automatically groups pixels with similar attributes together. Experimental results on KITTI and nuScenes datasets showcase the advantageous performance of MonoYolo over superior monocular detectors for large models, while the lightweight model maintains real-time detection capabilities. Meanwhile, the proposed SFPN offers a seamless integration into existing image-only 3D detectors, presenting a plug-and-play solution for enhanced monocular 3D object detection performance.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"180 \",\"pages\":\"Article 113389\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625007008\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625007008","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

单目三维目标检测在车辆感知系统中起着至关重要的作用。目前的方法经常难以有效地提取场景级语义信息,并且针对具有不同计算能力的各种嵌入式设备量身定制的单目3D检测器的可用性可能仍然有限。本文介绍了MonoYolo,一种可扩展的检测器,旨在满足不同资源约束下的实用性和效率。特别地,我们设计了一个超像素特征金字塔网络(SFPN),它自动将具有相似属性的像素分组在一起。在KITTI和nuScenes数据集上的实验结果表明,MonoYolo的性能优于大型模型的单目检测器,而轻量级模型保持了实时检测能力。同时,提出的SFPN提供了与现有的纯图像3D探测器的无缝集成,为增强单眼3D物体检测性能提供了即插即用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scalable monocular 3D detector with Superpixel Feature Pyramid Network
Monocular 3D object detection plays a pivotal role in vehicle perception systems. Current methods frequently struggle to effectively extract scene-level semantic information, and the availability of monocular 3D detectors tailored to diverse embedded devices with varying computing power may still be limited. This paper introduces MonoYolo, a scalable detector designed for practicality and efficiency with varying resource constraints. In particular, we design a Superpixel Feature Pyramid Network (SFPN) that automatically groups pixels with similar attributes together. Experimental results on KITTI and nuScenes datasets showcase the advantageous performance of MonoYolo over superior monocular detectors for large models, while the lightweight model maintains real-time detection capabilities. Meanwhile, the proposed SFPN offers a seamless integration into existing image-only 3D detectors, presenting a plug-and-play solution for enhanced monocular 3D object detection performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信