Yong Hu, Pingguang Chen, Yuzhuo Zhou, Guyu Zhou, Jikai Liu
{"title":"含ti3c2tx衍生TiO2的富氧BiVO4/TiO2/Co2P2O7异质结光阳极用于增强光电化学水氧化","authors":"Yong Hu, Pingguang Chen, Yuzhuo Zhou, Guyu Zhou, Jikai Liu","doi":"10.1016/j.renene.2025.123702","DOIUrl":null,"url":null,"abstract":"<div><div>Constructing BiVO<sub>4</sub><strong>/</strong>TiO<sub>2</sub> heterojunction and introducing oxygen vacancies (O<sub>V</sub>) are effective strategies to increase the photoelectrochemical (PEC) performance of BiVO<sub>4</sub>. In this work, an oxygen-vacancy-rich BiVO<sub>4</sub>/TiO<sub>2</sub> heterojunction is synthesized through a simple hydrothermal method using Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene as the precursor for TiO<sub>2</sub>. During the reaction, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene is oxidized to TiO<sub>2</sub> by water and surface chemisorbed oxygen of BiVO<sub>4</sub> to form a heterojunction with BiVO<sub>4</sub>. Meanwhile, BiVO<sub>4</sub> is reduced by Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene to produce O<sub>V</sub>. The as-synthesized BiVO<sub>4</sub>/TiO<sub>2</sub> heterojunction delivers a high photocurrent density of 2.73 mA cm<sup>−2</sup> at 1.23 V<sub>RHE</sub>, which is 2-fold higher than the BiVO<sub>4</sub> (1.36 mA cm<sup>−2</sup>). In addition, the carrier transfer in the BiVO<sub>4</sub>/TiO<sub>2</sub> heterojunction is investigated through density functional theory (DFT) calculations. The photogenerated electrons will transfer to the BiVO<sub>4</sub>, while the photogenerated holes will migrate to the TiO<sub>2</sub>. The BiVO<sub>4</sub> and TiO<sub>2</sub> form a type II heterojunction, leading to efficient separation of electron-hole pairs. After loading Co<sub>2</sub>P<sub>2</sub>O<sub>7</sub> nanosheets as an oxygen evolution cocatalyst, a considerable photocurrent density of 4.57 mA/cm<sup>2</sup> at 1.23 V<sub>RHE</sub> can be achieved. This work presents a novel strategy of constructing BiVO<sub>4</sub>/TiO<sub>2</sub> heterojunctions and introducing O<sub>V</sub>, which may be used to fabricate other TiO<sub>2</sub>-constituted heterojunctions and synchronously introduce O<sub>V</sub>.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"254 ","pages":"Article 123702"},"PeriodicalIF":9.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An oxygen-vacancy-rich BiVO4/TiO2/Co2P2O7 heterojunction photoanode with Ti3C2Tx-derived TiO2 for enhanced photoelectrochemical water oxidation\",\"authors\":\"Yong Hu, Pingguang Chen, Yuzhuo Zhou, Guyu Zhou, Jikai Liu\",\"doi\":\"10.1016/j.renene.2025.123702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Constructing BiVO<sub>4</sub><strong>/</strong>TiO<sub>2</sub> heterojunction and introducing oxygen vacancies (O<sub>V</sub>) are effective strategies to increase the photoelectrochemical (PEC) performance of BiVO<sub>4</sub>. In this work, an oxygen-vacancy-rich BiVO<sub>4</sub>/TiO<sub>2</sub> heterojunction is synthesized through a simple hydrothermal method using Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene as the precursor for TiO<sub>2</sub>. During the reaction, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene is oxidized to TiO<sub>2</sub> by water and surface chemisorbed oxygen of BiVO<sub>4</sub> to form a heterojunction with BiVO<sub>4</sub>. Meanwhile, BiVO<sub>4</sub> is reduced by Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene to produce O<sub>V</sub>. The as-synthesized BiVO<sub>4</sub>/TiO<sub>2</sub> heterojunction delivers a high photocurrent density of 2.73 mA cm<sup>−2</sup> at 1.23 V<sub>RHE</sub>, which is 2-fold higher than the BiVO<sub>4</sub> (1.36 mA cm<sup>−2</sup>). In addition, the carrier transfer in the BiVO<sub>4</sub>/TiO<sub>2</sub> heterojunction is investigated through density functional theory (DFT) calculations. The photogenerated electrons will transfer to the BiVO<sub>4</sub>, while the photogenerated holes will migrate to the TiO<sub>2</sub>. The BiVO<sub>4</sub> and TiO<sub>2</sub> form a type II heterojunction, leading to efficient separation of electron-hole pairs. After loading Co<sub>2</sub>P<sub>2</sub>O<sub>7</sub> nanosheets as an oxygen evolution cocatalyst, a considerable photocurrent density of 4.57 mA/cm<sup>2</sup> at 1.23 V<sub>RHE</sub> can be achieved. This work presents a novel strategy of constructing BiVO<sub>4</sub>/TiO<sub>2</sub> heterojunctions and introducing O<sub>V</sub>, which may be used to fabricate other TiO<sub>2</sub>-constituted heterojunctions and synchronously introduce O<sub>V</sub>.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"254 \",\"pages\":\"Article 123702\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148125013643\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125013643","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
构建BiVO4/TiO2异质结和引入氧空位(OV)是提高BiVO4光电化学性能的有效策略。本文以Ti3C2Tx MXene为TiO2前驱体,通过简单的水热法合成了富氧空位BiVO4/TiO2异质结。在反应过程中,Ti3C2Tx MXene被水和BiVO4表面化学吸附的氧氧化成TiO2,与BiVO4形成异质结。同时,BiVO4被Ti3C2Tx MXene还原生成OV。合成的BiVO4/TiO2异质结在1.23 VRHE下具有2.73 mA cm−2的高光电流密度,是BiVO4 (1.36 mA cm−2)的2倍。此外,通过密度泛函理论(DFT)计算研究了BiVO4/TiO2异质结中的载流子转移。光生电子将转移到BiVO4上,而光生空穴将迁移到TiO2上。BiVO4和TiO2形成II型异质结,导致电子-空穴对的有效分离。负载Co2P2O7纳米片作为析氧助催化剂后,在1.23 VRHE下可获得4.57 mA/cm2的可观光电流密度。本文提出了一种构建BiVO4/TiO2异质结并引入OV的新策略,该策略可用于制备其他TiO2异质结并同步引入OV。
An oxygen-vacancy-rich BiVO4/TiO2/Co2P2O7 heterojunction photoanode with Ti3C2Tx-derived TiO2 for enhanced photoelectrochemical water oxidation
Constructing BiVO4/TiO2 heterojunction and introducing oxygen vacancies (OV) are effective strategies to increase the photoelectrochemical (PEC) performance of BiVO4. In this work, an oxygen-vacancy-rich BiVO4/TiO2 heterojunction is synthesized through a simple hydrothermal method using Ti3C2Tx MXene as the precursor for TiO2. During the reaction, Ti3C2Tx MXene is oxidized to TiO2 by water and surface chemisorbed oxygen of BiVO4 to form a heterojunction with BiVO4. Meanwhile, BiVO4 is reduced by Ti3C2Tx MXene to produce OV. The as-synthesized BiVO4/TiO2 heterojunction delivers a high photocurrent density of 2.73 mA cm−2 at 1.23 VRHE, which is 2-fold higher than the BiVO4 (1.36 mA cm−2). In addition, the carrier transfer in the BiVO4/TiO2 heterojunction is investigated through density functional theory (DFT) calculations. The photogenerated electrons will transfer to the BiVO4, while the photogenerated holes will migrate to the TiO2. The BiVO4 and TiO2 form a type II heterojunction, leading to efficient separation of electron-hole pairs. After loading Co2P2O7 nanosheets as an oxygen evolution cocatalyst, a considerable photocurrent density of 4.57 mA/cm2 at 1.23 VRHE can be achieved. This work presents a novel strategy of constructing BiVO4/TiO2 heterojunctions and introducing OV, which may be used to fabricate other TiO2-constituted heterojunctions and synchronously introduce OV.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.