{"title":"阴离子大小控制二氧化硅界面上的阳离子维格纳晶体结构","authors":"Ho Hong Chau, Hua Li and Rob Atkin*, ","doi":"10.1021/acs.jpclett.5c0073810.1021/acs.jpclett.5c00738","DOIUrl":null,"url":null,"abstract":"<p >High-resolution atomic force microscopy (AFM) images reveal that anion size systematically controls the dimensions of cation Wigner crystal-like structures (WCLS) at silica–electrolyte interfaces. Calcium halide solutions (CaCl<sub>2</sub>, CaBr<sub>2</sub>, CaI<sub>2</sub>) at pH 10.5 form hexagonally close-packed Ca<sup>2+</sup> structures with spacings of 3.6–3.8 Å (CaCl<sub>2</sub>), 4.8 Å (CaBr<sub>2</sub>), and 5.0–5.1 Å (CaI<sub>2</sub>). The CaCl<sub>2</sub> spacing matches the Cl<sup>–</sup> diameter, suggesting direct Ca<sup>2+</sup>–Cl<sup>–</sup> contact, whereas Br<sup>–</sup> and I<sup>–</sup> systems show consistent 0.7–0.9 Å offsets above their ionic diameters, indicating partially hydrated states. This behavior reflects the balance between ionic charge density and hydration effects. The high charge density of Cl<sup>–</sup> enables strong Ca<sup>2+</sup> interactions sufficient to displace hydration waters, while the lower charge densities of Br<sup>–</sup> and I<sup>–</sup> lead to less strong attractions with Ca<sup>2+</sup> and partial hydration layers are preserved. These findings demonstrate how ion size and hydration control Stern layer ion organization, providing new insights into the electrical double layer structure.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 23","pages":"5695–5699 5695–5699"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anion Size Controls Cation Wigner Crystal-Like Structures at Silica Interfaces\",\"authors\":\"Ho Hong Chau, Hua Li and Rob Atkin*, \",\"doi\":\"10.1021/acs.jpclett.5c0073810.1021/acs.jpclett.5c00738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High-resolution atomic force microscopy (AFM) images reveal that anion size systematically controls the dimensions of cation Wigner crystal-like structures (WCLS) at silica–electrolyte interfaces. Calcium halide solutions (CaCl<sub>2</sub>, CaBr<sub>2</sub>, CaI<sub>2</sub>) at pH 10.5 form hexagonally close-packed Ca<sup>2+</sup> structures with spacings of 3.6–3.8 Å (CaCl<sub>2</sub>), 4.8 Å (CaBr<sub>2</sub>), and 5.0–5.1 Å (CaI<sub>2</sub>). The CaCl<sub>2</sub> spacing matches the Cl<sup>–</sup> diameter, suggesting direct Ca<sup>2+</sup>–Cl<sup>–</sup> contact, whereas Br<sup>–</sup> and I<sup>–</sup> systems show consistent 0.7–0.9 Å offsets above their ionic diameters, indicating partially hydrated states. This behavior reflects the balance between ionic charge density and hydration effects. The high charge density of Cl<sup>–</sup> enables strong Ca<sup>2+</sup> interactions sufficient to displace hydration waters, while the lower charge densities of Br<sup>–</sup> and I<sup>–</sup> lead to less strong attractions with Ca<sup>2+</sup> and partial hydration layers are preserved. These findings demonstrate how ion size and hydration control Stern layer ion organization, providing new insights into the electrical double layer structure.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 23\",\"pages\":\"5695–5699 5695–5699\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00738\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00738","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
高分辨率原子力显微镜(AFM)图像显示,阴离子大小系统地控制着二氧化硅-电解质界面上阳离子维格纳晶体结构(WCLS)的尺寸。在pH 10.5下,卤化钙溶液(CaCl2, CaBr2, CaI2)形成六方密排Ca2+结构,其间距为3.6-3.8 Å (CaCl2), 4.8 Å (CaBr2)和5.0-5.1 Å (CaI2)。CaCl2的间距与Cl -直径匹配,表明Ca2+ - Cl -直接接触,而Br -和I -系统在其离子直径上显示一致的0.7-0.9 Å偏移,表明部分水合状态。这种行为反映了离子电荷密度和水化效应之间的平衡。Cl -的高电荷密度使强Ca2+相互作用足以取代水合水,而Br -和I -的低电荷密度导致Ca2+的吸引力较弱,部分水合层得以保留。这些发现证明了离子大小和水合作用如何控制Stern层离子组织,为电双层结构提供了新的见解。
Anion Size Controls Cation Wigner Crystal-Like Structures at Silica Interfaces
High-resolution atomic force microscopy (AFM) images reveal that anion size systematically controls the dimensions of cation Wigner crystal-like structures (WCLS) at silica–electrolyte interfaces. Calcium halide solutions (CaCl2, CaBr2, CaI2) at pH 10.5 form hexagonally close-packed Ca2+ structures with spacings of 3.6–3.8 Å (CaCl2), 4.8 Å (CaBr2), and 5.0–5.1 Å (CaI2). The CaCl2 spacing matches the Cl– diameter, suggesting direct Ca2+–Cl– contact, whereas Br– and I– systems show consistent 0.7–0.9 Å offsets above their ionic diameters, indicating partially hydrated states. This behavior reflects the balance between ionic charge density and hydration effects. The high charge density of Cl– enables strong Ca2+ interactions sufficient to displace hydration waters, while the lower charge densities of Br– and I– lead to less strong attractions with Ca2+ and partial hydration layers are preserved. These findings demonstrate how ion size and hydration control Stern layer ion organization, providing new insights into the electrical double layer structure.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.