具有优化卤素配体的水合离子聚合物用于热致变色智能窗口:增强透光率和太阳调制

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-11 DOI:10.1002/smll.202504399
Huaiyuan Wang, Baiqi Zhang, Jie Wang, Yuanwei Lu, Tao Qi, Xuefeng Tian, Meiqi Wang, Zhibin Qu, Wei Zhou, Fei Sun, Jihui Gao, Guangbo Zhao
{"title":"具有优化卤素配体的水合离子聚合物用于热致变色智能窗口:增强透光率和太阳调制","authors":"Huaiyuan Wang,&nbsp;Baiqi Zhang,&nbsp;Jie Wang,&nbsp;Yuanwei Lu,&nbsp;Tao Qi,&nbsp;Xuefeng Tian,&nbsp;Meiqi Wang,&nbsp;Zhibin Qu,&nbsp;Wei Zhou,&nbsp;Fei Sun,&nbsp;Jihui Gao,&nbsp;Guangbo Zhao","doi":"10.1002/smll.202504399","DOIUrl":null,"url":null,"abstract":"<p>Thermochromic smart windows dynamically adjust solar transmittance with temperature changes, offering a promising solution for energy-efficient buildings. Transition metal complexes are widely studied for their optical tunability and cost-effectiveness. However, the tetrahedral coordination configuration, typically a high-temperature absorber, has absorption peaks in the 500–700 nm range, reducing luminous transmittance and limiting applications requiring high optical clarity. This study proposes a hydrated ionic polymer ([(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>NH<sub>2</sub>]<sub>2</sub>NiCl<sub>4-x</sub>Br<sub>x</sub>@PVP) that achieves thermochromism via hydration-driven coordination transitions. Both experimental and ab initio calculations confirm that substituting Cl<sup>−</sup> with Br<sup>−</sup> weakens the ligand field strength, causing a red shift in the absorption peak. As a result, the luminous transmittance (380−780 nm) in the hot state increases to 46.0%, while solar modulation (300−2500nm) remains high at 36.3%. Molecular dynamics simulations further reveal that Br<sup>−</sup> alters hydrogen bonding, influencing hydration and dehydration processes. Experiments show that under ≈1000 W m<sup>−2</sup> irradiance, the film has solar transmittance comparable to standard glass at low temperatures, and darkens within 20–40 min, reducing transmitted irradiance to 550 W m<sup>−2</sup>. Simulations indicate it could reduce annual energy consumption by ≈20 kWh m<sup>−2</sup> and raise indoor comfort probability from 52% to 69%. Overall, this study provides a new pathway for developing high-performance thermochromic materials for energy-efficient buildings.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 32","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrated Ionic Polymer with Optimized Halogen Ligand for Thermochromic Smart Windows: Enhanced Luminous Transmittance and Solar Modulation\",\"authors\":\"Huaiyuan Wang,&nbsp;Baiqi Zhang,&nbsp;Jie Wang,&nbsp;Yuanwei Lu,&nbsp;Tao Qi,&nbsp;Xuefeng Tian,&nbsp;Meiqi Wang,&nbsp;Zhibin Qu,&nbsp;Wei Zhou,&nbsp;Fei Sun,&nbsp;Jihui Gao,&nbsp;Guangbo Zhao\",\"doi\":\"10.1002/smll.202504399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermochromic smart windows dynamically adjust solar transmittance with temperature changes, offering a promising solution for energy-efficient buildings. Transition metal complexes are widely studied for their optical tunability and cost-effectiveness. However, the tetrahedral coordination configuration, typically a high-temperature absorber, has absorption peaks in the 500–700 nm range, reducing luminous transmittance and limiting applications requiring high optical clarity. This study proposes a hydrated ionic polymer ([(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>NH<sub>2</sub>]<sub>2</sub>NiCl<sub>4-x</sub>Br<sub>x</sub>@PVP) that achieves thermochromism via hydration-driven coordination transitions. Both experimental and ab initio calculations confirm that substituting Cl<sup>−</sup> with Br<sup>−</sup> weakens the ligand field strength, causing a red shift in the absorption peak. As a result, the luminous transmittance (380−780 nm) in the hot state increases to 46.0%, while solar modulation (300−2500nm) remains high at 36.3%. Molecular dynamics simulations further reveal that Br<sup>−</sup> alters hydrogen bonding, influencing hydration and dehydration processes. Experiments show that under ≈1000 W m<sup>−2</sup> irradiance, the film has solar transmittance comparable to standard glass at low temperatures, and darkens within 20–40 min, reducing transmitted irradiance to 550 W m<sup>−2</sup>. Simulations indicate it could reduce annual energy consumption by ≈20 kWh m<sup>−2</sup> and raise indoor comfort probability from 52% to 69%. Overall, this study provides a new pathway for developing high-performance thermochromic materials for energy-efficient buildings.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 32\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202504399\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202504399","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热致变色智能窗随着温度变化动态调节太阳能透过率,为节能建筑提供了一种很有前景的解决方案。过渡金属配合物因其光学可调性和成本效益而受到广泛研究。然而,四面体配位结构,典型的高温吸收剂,其吸收峰在500-700 nm范围内,降低了透光率,限制了需要高光学清晰度的应用。本研究提出了一种水合离子聚合物([(C2H5)2NH2]2NiCl4-xBrx@PVP),通过水合驱动的配位转变实现热致变色。实验和从头计算都证实,用Br -取代Cl -会减弱配体的场强,导致吸收峰的红移。结果表明,热态下的发光透过率(380 ~ 780 nm)提高到46.0%,而太阳调制率(300 ~ 2500nm)保持在36.3%的高位。分子动力学模拟进一步揭示了Br−改变氢键,影响水合和脱水过程。实验表明,在≈1000 W m−2的辐照度下,薄膜在低温下具有与标准玻璃相当的太阳透过率,并在20-40 min内变暗,透射辐照度降至550 W m−2。模拟结果表明,该系统每年可减少约20 kWh m−2的能源消耗,并将室内舒适概率从52%提高到69%。本研究为节能建筑中高性能热致变色材料的开发提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrated Ionic Polymer with Optimized Halogen Ligand for Thermochromic Smart Windows: Enhanced Luminous Transmittance and Solar Modulation

Hydrated Ionic Polymer with Optimized Halogen Ligand for Thermochromic Smart Windows: Enhanced Luminous Transmittance and Solar Modulation

Hydrated Ionic Polymer with Optimized Halogen Ligand for Thermochromic Smart Windows: Enhanced Luminous Transmittance and Solar Modulation

Thermochromic smart windows dynamically adjust solar transmittance with temperature changes, offering a promising solution for energy-efficient buildings. Transition metal complexes are widely studied for their optical tunability and cost-effectiveness. However, the tetrahedral coordination configuration, typically a high-temperature absorber, has absorption peaks in the 500–700 nm range, reducing luminous transmittance and limiting applications requiring high optical clarity. This study proposes a hydrated ionic polymer ([(C2H5)2NH2]2NiCl4-xBrx@PVP) that achieves thermochromism via hydration-driven coordination transitions. Both experimental and ab initio calculations confirm that substituting Cl with Br weakens the ligand field strength, causing a red shift in the absorption peak. As a result, the luminous transmittance (380−780 nm) in the hot state increases to 46.0%, while solar modulation (300−2500nm) remains high at 36.3%. Molecular dynamics simulations further reveal that Br alters hydrogen bonding, influencing hydration and dehydration processes. Experiments show that under ≈1000 W m−2 irradiance, the film has solar transmittance comparable to standard glass at low temperatures, and darkens within 20–40 min, reducing transmitted irradiance to 550 W m−2. Simulations indicate it could reduce annual energy consumption by ≈20 kWh m−2 and raise indoor comfort probability from 52% to 69%. Overall, this study provides a new pathway for developing high-performance thermochromic materials for energy-efficient buildings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信