在MDEA/NHD/H2O双相吸收剂中裁剪胺活化剂以实现节能CO2捕获:极性驱动相分离和多组分协同作用的机理见解

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Dingkai Hu , Bohak Yoon , Yanlong Hu , Dezhi Cao , Qiang Wang , Bin Wang , Shijian Lu
{"title":"在MDEA/NHD/H2O双相吸收剂中裁剪胺活化剂以实现节能CO2捕获:极性驱动相分离和多组分协同作用的机理见解","authors":"Dingkai Hu ,&nbsp;Bohak Yoon ,&nbsp;Yanlong Hu ,&nbsp;Dezhi Cao ,&nbsp;Qiang Wang ,&nbsp;Bin Wang ,&nbsp;Shijian Lu","doi":"10.1016/j.seppur.2025.133908","DOIUrl":null,"url":null,"abstract":"<div><div>Amine-based CO<sub>2</sub> capture faces significant challenges due to high regeneration energy requirements (3.50–4.50 GJ/tCO<sub>2</sub>) and the trade-off between viscosity and liquid–liquid phase separation. In this work, we designed a biphasic absorbent by optimizing a ternary methyldiethanolamine (MDEA)/polyethylene glycol dimethyl ether (NHD)/water system, synergized with activators including monoethanolamine (MEA), diethanolamine (DEA), 2-amino-2-methyl-1-propanol (AMP), and piperazine (PZ) to address these limitations. Our results reveal that incorporating 15 wt% MEA yielded the best performance, enhancing absorption capacity to 2.04 mol/L–90 % higher than the MDEA/NHD/H<sub>2</sub>O baseline–while achieving a sevenfold increase in the initial absorption rate and a 34 % reduction in regeneration energy (2.50 GJ/tCO<sub>2</sub>) compared to 30 wt% MEA solutions. DEA and PZ showed lower capacity enhancements (24 % and 90 %, respectively), while PZ led to viscosity spikes, and AMP caused impractical solid–liquid separation. The optimized 15 wt% MEA + 15 wt% MDEA + 50 wt% NHD + 20 wt% H2O (3M3M10N4H) system exhibited polarity-driven liquid–liquid phase separation, where high-dipole absorption products (e.g., MEACOO<sup>−</sup> with a dipole moment of 21.99 D) concentrated in the aqueous phase, while low-polarity NHD formed a distinct phase. Density functional theory (DFT) calculations revealed ion–dipole interactions as the thermodynamic driver of liquid–liquid phase separation. Mechanistic studies further demonstrated that MDEA reduced the energy barrier for zwitterionic intermediate conversion to carbamate via proton transfer (12 kcal/mol), enhancing both absorption kinetics and capacity through synergistic interactions with MEA. Desorption at 120 °C achieved 93 % CO<sub>2</sub> release efficiency with 92 % capacity retention over five cycles, maintaining stable lean/rich phase ratios. Based on these insights, we propose a functional division strategy integrating an “activator-main amine-phase separation agent” framework, elucidating the multi-component synergy mechanisms governing absorption, phase separation, and regeneration. This study highlights a rational design framework for energy-efficient and stable liquid–liquid phase change absorbents for CO<sub>2</sub> capture.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"376 ","pages":"Article 133908"},"PeriodicalIF":8.1000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring amine activators in MDEA/NHD/H2O biphasic absorbents for energy-efficient CO2 capture: Mechanistic insights into polarity-driven phase separation and multi-component synergy\",\"authors\":\"Dingkai Hu ,&nbsp;Bohak Yoon ,&nbsp;Yanlong Hu ,&nbsp;Dezhi Cao ,&nbsp;Qiang Wang ,&nbsp;Bin Wang ,&nbsp;Shijian Lu\",\"doi\":\"10.1016/j.seppur.2025.133908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amine-based CO<sub>2</sub> capture faces significant challenges due to high regeneration energy requirements (3.50–4.50 GJ/tCO<sub>2</sub>) and the trade-off between viscosity and liquid–liquid phase separation. In this work, we designed a biphasic absorbent by optimizing a ternary methyldiethanolamine (MDEA)/polyethylene glycol dimethyl ether (NHD)/water system, synergized with activators including monoethanolamine (MEA), diethanolamine (DEA), 2-amino-2-methyl-1-propanol (AMP), and piperazine (PZ) to address these limitations. Our results reveal that incorporating 15 wt% MEA yielded the best performance, enhancing absorption capacity to 2.04 mol/L–90 % higher than the MDEA/NHD/H<sub>2</sub>O baseline–while achieving a sevenfold increase in the initial absorption rate and a 34 % reduction in regeneration energy (2.50 GJ/tCO<sub>2</sub>) compared to 30 wt% MEA solutions. DEA and PZ showed lower capacity enhancements (24 % and 90 %, respectively), while PZ led to viscosity spikes, and AMP caused impractical solid–liquid separation. The optimized 15 wt% MEA + 15 wt% MDEA + 50 wt% NHD + 20 wt% H2O (3M3M10N4H) system exhibited polarity-driven liquid–liquid phase separation, where high-dipole absorption products (e.g., MEACOO<sup>−</sup> with a dipole moment of 21.99 D) concentrated in the aqueous phase, while low-polarity NHD formed a distinct phase. Density functional theory (DFT) calculations revealed ion–dipole interactions as the thermodynamic driver of liquid–liquid phase separation. Mechanistic studies further demonstrated that MDEA reduced the energy barrier for zwitterionic intermediate conversion to carbamate via proton transfer (12 kcal/mol), enhancing both absorption kinetics and capacity through synergistic interactions with MEA. Desorption at 120 °C achieved 93 % CO<sub>2</sub> release efficiency with 92 % capacity retention over five cycles, maintaining stable lean/rich phase ratios. Based on these insights, we propose a functional division strategy integrating an “activator-main amine-phase separation agent” framework, elucidating the multi-component synergy mechanisms governing absorption, phase separation, and regeneration. This study highlights a rational design framework for energy-efficient and stable liquid–liquid phase change absorbents for CO<sub>2</sub> capture.</div></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"376 \",\"pages\":\"Article 133908\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383586625025055\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586625025055","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于高再生能量要求(3.50-4.50 GJ/tCO2)以及粘度和液-液相分离之间的权衡,胺基CO2捕集面临着重大挑战。在这项工作中,我们通过优化三元甲基二乙醇胺(MDEA)/聚乙二醇二甲醚(NHD)/水体系设计了一种双相吸收剂,并与单乙醇胺(MEA)、二乙醇胺(DEA)、2-氨基-2-甲基-1-丙醇(AMP)和哌嗪(PZ)等活化剂协同作用,以解决这些局限性。我们的研究结果表明,加入15 wt%的MEA产生了最好的性能,将吸收能力提高到2.04 mol/ l,比MDEA/NHD/H2O基线高90%,同时实现了初始吸收率提高了7倍,再生能量(2.50 GJ/tCO2)比30 wt%的MEA溶液减少34%。DEA和PZ表现出较低的容量增强(分别为24%和90%),而PZ导致粘度峰值,AMP导致不切实际的固液分离。优化后的15 wt% MEA + 15 wt% MDEA + 50 wt% NHD + 20 wt% H2O (3M3M10N4H)体系表现出极性驱动的液液分离,其中高偶极吸收产物(如偶极矩为21.99 D的MEACOO−)集中在水相中,而低极性NHD形成了不同的相。密度泛函理论(DFT)计算揭示了离子偶极相互作用是液-液相分离的热力学驱动因素。机理研究进一步表明,MDEA降低了两性离子中间体通过质子转移转化为氨基甲酸酯的能垒(12 kcal/mol),通过与MEA的协同作用增强了吸收动力学和吸收能力。120°C的解吸在5个循环中获得了93%的CO2释放效率和92%的容量保留率,保持了稳定的贫/富相比。基于这些见解,我们提出了一种整合“活化剂-主胺-相分离剂”框架的功能划分策略,阐明了控制吸收、相分离和再生的多组分协同机制。本研究强调了一种高效、稳定的液-液相变吸收剂的合理设计框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring amine activators in MDEA/NHD/H2O biphasic absorbents for energy-efficient CO2 capture: Mechanistic insights into polarity-driven phase separation and multi-component synergy

Tailoring amine activators in MDEA/NHD/H2O biphasic absorbents for energy-efficient CO2 capture: Mechanistic insights into polarity-driven phase separation and multi-component synergy
Amine-based CO2 capture faces significant challenges due to high regeneration energy requirements (3.50–4.50 GJ/tCO2) and the trade-off between viscosity and liquid–liquid phase separation. In this work, we designed a biphasic absorbent by optimizing a ternary methyldiethanolamine (MDEA)/polyethylene glycol dimethyl ether (NHD)/water system, synergized with activators including monoethanolamine (MEA), diethanolamine (DEA), 2-amino-2-methyl-1-propanol (AMP), and piperazine (PZ) to address these limitations. Our results reveal that incorporating 15 wt% MEA yielded the best performance, enhancing absorption capacity to 2.04 mol/L–90 % higher than the MDEA/NHD/H2O baseline–while achieving a sevenfold increase in the initial absorption rate and a 34 % reduction in regeneration energy (2.50 GJ/tCO2) compared to 30 wt% MEA solutions. DEA and PZ showed lower capacity enhancements (24 % and 90 %, respectively), while PZ led to viscosity spikes, and AMP caused impractical solid–liquid separation. The optimized 15 wt% MEA + 15 wt% MDEA + 50 wt% NHD + 20 wt% H2O (3M3M10N4H) system exhibited polarity-driven liquid–liquid phase separation, where high-dipole absorption products (e.g., MEACOO with a dipole moment of 21.99 D) concentrated in the aqueous phase, while low-polarity NHD formed a distinct phase. Density functional theory (DFT) calculations revealed ion–dipole interactions as the thermodynamic driver of liquid–liquid phase separation. Mechanistic studies further demonstrated that MDEA reduced the energy barrier for zwitterionic intermediate conversion to carbamate via proton transfer (12 kcal/mol), enhancing both absorption kinetics and capacity through synergistic interactions with MEA. Desorption at 120 °C achieved 93 % CO2 release efficiency with 92 % capacity retention over five cycles, maintaining stable lean/rich phase ratios. Based on these insights, we propose a functional division strategy integrating an “activator-main amine-phase separation agent” framework, elucidating the multi-component synergy mechanisms governing absorption, phase separation, and regeneration. This study highlights a rational design framework for energy-efficient and stable liquid–liquid phase change absorbents for CO2 capture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信