{"title":"亲丁酸蛋白多聚体的结构揭示了v - γ - 9v - δ2 T细胞受体激活的钳状机制","authors":"Mai Zhang, Yiqing Wang, Ningning Cai, Yingying Qu, Xianqiang Ma, Jing Xue, Xiaorui Chen, Xueguang Zhang, Junyu Xiao, Yonghui Zhang","doi":"10.1016/j.immuni.2025.05.011","DOIUrl":null,"url":null,"abstract":"Vγ9Vδ2 T cells, the major circulating human γδ T cell subset, respond to infections and tumors by recognizing phosphoantigens (pAgs) via transmembrane butyrophilins (BTN3A1, BTN3A2, and BTN2A1). Here, using cryoelectron microscopy, we resolved the structures of BTN multimers bound to the microbial pAg HMBPP alone and in complex with the T cell receptor (TCR). These structures reveal that BTN3A1 and BTN2A1 cooperate to sense pAgs through their intracellular B30.2 domains, whereas BTN3A2 and BTN2A1 interact extracellularly. TCR engagement triggers its conformational changes, allowing BTN2A1 to bind the Vγ9 chain laterally and BTN3A2 to interact apically with the Vδ2 chain’s germline-encoded regions and CDR3 motif, as well as the Vγ9 CDR3. Our study uncovers a “plier-like gripping” mechanism, where BTN multimers bridge the TCR surface to drive activation. These findings establish a structural foundation for γδ T cell-targeted immunotherapies distinct from αβ T cell strategies reliant on major-histocompatibility-complex-mediated antigen presentation.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"9 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structures of butyrophilin multimers reveal a plier-like mechanism for Vγ9Vδ2 T cell receptor activation\",\"authors\":\"Mai Zhang, Yiqing Wang, Ningning Cai, Yingying Qu, Xianqiang Ma, Jing Xue, Xiaorui Chen, Xueguang Zhang, Junyu Xiao, Yonghui Zhang\",\"doi\":\"10.1016/j.immuni.2025.05.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vγ9Vδ2 T cells, the major circulating human γδ T cell subset, respond to infections and tumors by recognizing phosphoantigens (pAgs) via transmembrane butyrophilins (BTN3A1, BTN3A2, and BTN2A1). Here, using cryoelectron microscopy, we resolved the structures of BTN multimers bound to the microbial pAg HMBPP alone and in complex with the T cell receptor (TCR). These structures reveal that BTN3A1 and BTN2A1 cooperate to sense pAgs through their intracellular B30.2 domains, whereas BTN3A2 and BTN2A1 interact extracellularly. TCR engagement triggers its conformational changes, allowing BTN2A1 to bind the Vγ9 chain laterally and BTN3A2 to interact apically with the Vδ2 chain’s germline-encoded regions and CDR3 motif, as well as the Vγ9 CDR3. Our study uncovers a “plier-like gripping” mechanism, where BTN multimers bridge the TCR surface to drive activation. These findings establish a structural foundation for γδ T cell-targeted immunotherapies distinct from αβ T cell strategies reliant on major-histocompatibility-complex-mediated antigen presentation.\",\"PeriodicalId\":13269,\"journal\":{\"name\":\"Immunity\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":25.5000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.immuni.2025.05.011\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2025.05.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Structures of butyrophilin multimers reveal a plier-like mechanism for Vγ9Vδ2 T cell receptor activation
Vγ9Vδ2 T cells, the major circulating human γδ T cell subset, respond to infections and tumors by recognizing phosphoantigens (pAgs) via transmembrane butyrophilins (BTN3A1, BTN3A2, and BTN2A1). Here, using cryoelectron microscopy, we resolved the structures of BTN multimers bound to the microbial pAg HMBPP alone and in complex with the T cell receptor (TCR). These structures reveal that BTN3A1 and BTN2A1 cooperate to sense pAgs through their intracellular B30.2 domains, whereas BTN3A2 and BTN2A1 interact extracellularly. TCR engagement triggers its conformational changes, allowing BTN2A1 to bind the Vγ9 chain laterally and BTN3A2 to interact apically with the Vδ2 chain’s germline-encoded regions and CDR3 motif, as well as the Vγ9 CDR3. Our study uncovers a “plier-like gripping” mechanism, where BTN multimers bridge the TCR surface to drive activation. These findings establish a structural foundation for γδ T cell-targeted immunotherapies distinct from αβ T cell strategies reliant on major-histocompatibility-complex-mediated antigen presentation.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.