工程可控改变丙二酰辅酶a水平以提高聚酮的产量

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sarah H. Klass, Mia Wesselkamper, Aidan E. Cowan, Namil Lee, Nathan Lanclos, Seokjung Cheong, Zilong Wang, Yan Chen, Jennifer W. Gin, Christopher J. Petzold, Jay D. Keasling
{"title":"工程可控改变丙二酰辅酶a水平以提高聚酮的产量","authors":"Sarah H. Klass, Mia Wesselkamper, Aidan E. Cowan, Namil Lee, Nathan Lanclos, Seokjung Cheong, Zilong Wang, Yan Chen, Jennifer W. Gin, Christopher J. Petzold, Jay D. Keasling","doi":"10.1038/s41589-025-01911-6","DOIUrl":null,"url":null,"abstract":"<p>Heterologous expression of polyketide synthase (PKS) genes in <i>Escherichia coli</i> has enabled the production of various valuable natural and synthetic products. However, the limited availability of malonyl-CoA (M-CoA) in <i>E. coli</i> remains a substantial impediment to high-titer polyketide production. Here we address this limitation by disrupting the native M-CoA biosynthetic pathway and introducing an orthogonal pathway comprising a malonate transporter and M-CoA ligase, enabling efficient M-CoA biosynthesis under malonate supplementation. This approach substantially increases M-CoA levels, enhancing fatty acid and polyketide titers while reducing the promiscuous activity of PKSs toward undesired acyl-CoA substrates. Subsequent adaptive laboratory evolution of these strains provides insights into M-CoA regulation and identifies mutations that further boost M-CoA and polyketide production. This strategy improves <i>E. coli</i> as a host for polyketide biosynthesis and advances understanding of M-CoA metabolism in microbial systems.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"20 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering controllable alteration of malonyl-CoA levels to enhance polyketide production\",\"authors\":\"Sarah H. Klass, Mia Wesselkamper, Aidan E. Cowan, Namil Lee, Nathan Lanclos, Seokjung Cheong, Zilong Wang, Yan Chen, Jennifer W. Gin, Christopher J. Petzold, Jay D. Keasling\",\"doi\":\"10.1038/s41589-025-01911-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heterologous expression of polyketide synthase (PKS) genes in <i>Escherichia coli</i> has enabled the production of various valuable natural and synthetic products. However, the limited availability of malonyl-CoA (M-CoA) in <i>E. coli</i> remains a substantial impediment to high-titer polyketide production. Here we address this limitation by disrupting the native M-CoA biosynthetic pathway and introducing an orthogonal pathway comprising a malonate transporter and M-CoA ligase, enabling efficient M-CoA biosynthesis under malonate supplementation. This approach substantially increases M-CoA levels, enhancing fatty acid and polyketide titers while reducing the promiscuous activity of PKSs toward undesired acyl-CoA substrates. Subsequent adaptive laboratory evolution of these strains provides insights into M-CoA regulation and identifies mutations that further boost M-CoA and polyketide production. This strategy improves <i>E. coli</i> as a host for polyketide biosynthesis and advances understanding of M-CoA metabolism in microbial systems.</p><figure></figure>\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41589-025-01911-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01911-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

聚酮合成酶(PKS)基因在大肠杆菌中的异源表达使得生产各种有价值的天然和合成产物成为可能。然而,在大肠杆菌中有限的丙二酰辅酶a (M-CoA)的可用性仍然是高滴度聚酮生产的实质性障碍。在这里,我们通过破坏天然的M-CoA生物合成途径并引入由丙二酸转运体和M-CoA连接酶组成的正交途径来解决这一限制,从而在丙二酸补充下实现高效的M-CoA生物合成。这种方法大大提高了M-CoA水平,增强了脂肪酸和聚酮的滴度,同时降低了pks对不需要的酰基coa底物的混杂活性。这些菌株随后的适应性实验室进化提供了对M-CoA调控的见解,并确定了进一步促进M-CoA和聚酮产生的突变。这一策略提高了大肠杆菌作为聚酮生物合成宿主的能力,并促进了对微生物系统中m -辅酶a代谢的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering controllable alteration of malonyl-CoA levels to enhance polyketide production

Engineering controllable alteration of malonyl-CoA levels to enhance polyketide production

Heterologous expression of polyketide synthase (PKS) genes in Escherichia coli has enabled the production of various valuable natural and synthetic products. However, the limited availability of malonyl-CoA (M-CoA) in E. coli remains a substantial impediment to high-titer polyketide production. Here we address this limitation by disrupting the native M-CoA biosynthetic pathway and introducing an orthogonal pathway comprising a malonate transporter and M-CoA ligase, enabling efficient M-CoA biosynthesis under malonate supplementation. This approach substantially increases M-CoA levels, enhancing fatty acid and polyketide titers while reducing the promiscuous activity of PKSs toward undesired acyl-CoA substrates. Subsequent adaptive laboratory evolution of these strains provides insights into M-CoA regulation and identifies mutations that further boost M-CoA and polyketide production. This strategy improves E. coli as a host for polyketide biosynthesis and advances understanding of M-CoA metabolism in microbial systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信