{"title":"zno基纳米复合材料对甲基橙和亚甲基蓝染料异质结构型特异性光催化降解研究","authors":"Mengjiao Wu, Chengpu Lv, Yuling Xiong, Wenglong Li, Yuangui Lin, Jing Li, Fei Yu, Huan Yuan, Biao You, Qiuping Zhang, Ming Xu","doi":"10.1016/j.jare.2025.06.027","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Heterostructured photocatalysts have shown an enormous potential in photocatalytic degradation of organic pollutants in wastewater. However, the efficacy of such heterojunction on the photocatalytic degradation behaviors has not yet been fully revealed.<h3>Objectives</h3>This work aims to demonstrate a specific photocatalytic degradation behavior of ZnO-based heterostructured nanocomposites toward methyl orange (MO) and methylene blue (MB) dyes based on a systematically comparative investigation for their physical and chemical properties.<h3>Methods</h3>A series of low-cost and efficient ZnO-based heterostructured nanocomposite photocatalysts including ZnO/CuO, ZnO/TiO<sub>2</sub> and ZnO/SnO<sub>2</sub> with 3 and 10 mol% of CuO/TiO<sub>2</sub>/SnO<sub>2</sub> were synthesized by a simple strategy to combine the modified polymer-network gel and traditional sol–gel methods. The physical and chemical properties were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), ultraviolet–visible (UV–Vis) absorption spectra, photoluminescence (PL), surface photovoltage (SPV), electrochemical impedance spectroscopy (EIS) and zeta potential.<h3>Results</h3>Owing to the fast interfacial charge transfer at the heterojunction, all the three ZnO-based nanocomposite catalysts exhibited higher efficient separation of photogenerated electrons and holes, delivering an enhanced photocatalytic activity for the degradation of organic dyes compared with pure ZnO. Three photocatalysts of ZnO/3 %-CuO, ZnO/3 %-TiO<sub>2</sub> and ZnO/10 %-SnO<sub>2</sub> (marking as ZC3, ZT3 and ZS10, respectively) were capable of achieving the complete degradation of 4 mg/L concentration of MB dye within 50 min, and the first two could degrade MO within 80 min. However, the degradation rate of MO by ZS10 became significantly slower. For MO and MB degradation, the active species of photogenerated holes (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mtext is=\"true\">h</mtext><mrow is=\"true\"><mi is=\"true\">h</mi><mi is=\"true\">&#x3BD;</mi></mrow><mo is=\"true\">+</mo></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 1439.3 1295.7\" width=\"3.343ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-68\"></use></g><g is=\"true\" transform=\"translate(556,422)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g><g is=\"true\" transform=\"translate(556,-308)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-68\"></use></g><g is=\"true\" transform=\"translate(407,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-3BD\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mtext is=\"true\">h</mtext><mrow is=\"true\"><mi is=\"true\">h</mi><mi is=\"true\">ν</mi></mrow><mo is=\"true\">+</mo></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mtext is=\"true\">h</mtext><mrow is=\"true\"><mi is=\"true\">h</mi><mi is=\"true\">ν</mi></mrow><mo is=\"true\">+</mo></msubsup></math></script></span>) and superoxide radicals (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">&#xB7;</mo><msubsup is=\"true\"><mtext is=\"true\">O</mtext><mn is=\"true\">2</mn><mo is=\"true\">-</mo></msubsup></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -945.9 1707.5 1295.7\" width=\"3.966ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-22C5\"></use></g><g is=\"true\" transform=\"translate(278,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(778,432)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(778,-278)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">·</mo><msubsup is=\"true\"><mtext is=\"true\">O</mtext><mn is=\"true\">2</mn><mo is=\"true\">-</mo></msubsup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">·</mo><msubsup is=\"true\"><mtext is=\"true\">O</mtext><mn is=\"true\">2</mn><mo is=\"true\">-</mo></msubsup></mrow></math></script></span>) play the predominant roles, respectively, followed by hydroxyl radicals (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">&#xB7;</mo><mtext is=\"true\">OH</mtext></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 1807.5 898.2\" width=\"4.198ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-22C5\"></use></g><g is=\"true\" transform=\"translate(278,0)\"><use xlink:href=\"#MJMAIN-4F\"></use><use x=\"778\" xlink:href=\"#MJMAIN-48\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">·</mo><mtext is=\"true\">OH</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">·</mo><mtext is=\"true\">OH</mtext></mrow></math></script></span>). The differences in heterojunction configuration and dominant active species result in a specific photocatalytic degradation behavior of ZnO-based composite nanostructures.<h3>Conclusion</h3>The generation of the active species are influenced by the heterojunction configurations, of which the essence is that the different band alignments can results in the differences of interfacial charge transfer behaviors, and thus selective generation of the active species such as <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mtext is=\"true\">h</mtext><mrow is=\"true\"><mi is=\"true\">h</mi><mi is=\"true\">&#x3BD;</mi></mrow><mo is=\"true\">+</mo></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 1439.3 1295.7\" width=\"3.343ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-68\"></use></g><g is=\"true\" transform=\"translate(556,422)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g><g is=\"true\" transform=\"translate(556,-308)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-68\"></use></g><g is=\"true\" transform=\"translate(407,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-3BD\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mtext is=\"true\">h</mtext><mrow is=\"true\"><mi is=\"true\">h</mi><mi is=\"true\">ν</mi></mrow><mo is=\"true\">+</mo></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mtext is=\"true\">h</mtext><mrow is=\"true\"><mi is=\"true\">h</mi><mi is=\"true\">ν</mi></mrow><mo is=\"true\">+</mo></msubsup></math></script></span>, <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">&#xB7;</mo><msubsup is=\"true\"><mtext is=\"true\">O</mtext><mn is=\"true\">2</mn><mo is=\"true\">-</mo></msubsup></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -945.9 1707.5 1295.7\" width=\"3.966ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-22C5\"></use></g><g is=\"true\" transform=\"translate(278,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(778,432)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(778,-278)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">·</mo><msubsup is=\"true\"><mtext is=\"true\">O</mtext><mn is=\"true\">2</mn><mo is=\"true\">-</mo></msubsup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">·</mo><msubsup is=\"true\"><mtext is=\"true\">O</mtext><mn is=\"true\">2</mn><mo is=\"true\">-</mo></msubsup></mrow></math></script></span> and <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">&#xB7;</mo><mtext is=\"true\">OH</mtext></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 1807.5 898.2\" width=\"4.198ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-22C5\"></use></g><g is=\"true\" transform=\"translate(278,0)\"><use xlink:href=\"#MJMAIN-4F\"></use><use x=\"778\" xlink:href=\"#MJMAIN-48\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">·</mo><mtext is=\"true\">OH</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">·</mo><mtext is=\"true\">OH</mtext></mrow></math></script></span>. Importantly, this work offers a fundamental understanding for specific photocatalytic degradation of the different heterojunction nanostructures towards the different organic dyes.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"92 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterojunction configuration-specific photocatalytic degradation of methyl orange and methylene blue dyes using ZnO-based nanocomposites\",\"authors\":\"Mengjiao Wu, Chengpu Lv, Yuling Xiong, Wenglong Li, Yuangui Lin, Jing Li, Fei Yu, Huan Yuan, Biao You, Qiuping Zhang, Ming Xu\",\"doi\":\"10.1016/j.jare.2025.06.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Introduction</h3>Heterostructured photocatalysts have shown an enormous potential in photocatalytic degradation of organic pollutants in wastewater. However, the efficacy of such heterojunction on the photocatalytic degradation behaviors has not yet been fully revealed.<h3>Objectives</h3>This work aims to demonstrate a specific photocatalytic degradation behavior of ZnO-based heterostructured nanocomposites toward methyl orange (MO) and methylene blue (MB) dyes based on a systematically comparative investigation for their physical and chemical properties.<h3>Methods</h3>A series of low-cost and efficient ZnO-based heterostructured nanocomposite photocatalysts including ZnO/CuO, ZnO/TiO<sub>2</sub> and ZnO/SnO<sub>2</sub> with 3 and 10 mol% of CuO/TiO<sub>2</sub>/SnO<sub>2</sub> were synthesized by a simple strategy to combine the modified polymer-network gel and traditional sol–gel methods. The physical and chemical properties were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), ultraviolet–visible (UV–Vis) absorption spectra, photoluminescence (PL), surface photovoltage (SPV), electrochemical impedance spectroscopy (EIS) and zeta potential.<h3>Results</h3>Owing to the fast interfacial charge transfer at the heterojunction, all the three ZnO-based nanocomposite catalysts exhibited higher efficient separation of photogenerated electrons and holes, delivering an enhanced photocatalytic activity for the degradation of organic dyes compared with pure ZnO. Three photocatalysts of ZnO/3 %-CuO, ZnO/3 %-TiO<sub>2</sub> and ZnO/10 %-SnO<sub>2</sub> (marking as ZC3, ZT3 and ZS10, respectively) were capable of achieving the complete degradation of 4 mg/L concentration of MB dye within 50 min, and the first two could degrade MO within 80 min. However, the degradation rate of MO by ZS10 became significantly slower. For MO and MB degradation, the active species of photogenerated holes (<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">h</mtext><mrow is=\\\"true\\\"><mi is=\\\"true\\\">h</mi><mi is=\\\"true\\\">&#x3BD;</mi></mrow><mo is=\\\"true\\\">+</mo></msubsup></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -896.2 1439.3 1295.7\\\" width=\\\"3.343ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-68\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(556,422)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2B\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(556,-308)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-68\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(407,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-3BD\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">h</mtext><mrow is=\\\"true\\\"><mi is=\\\"true\\\">h</mi><mi is=\\\"true\\\">ν</mi></mrow><mo is=\\\"true\\\">+</mo></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">h</mtext><mrow is=\\\"true\\\"><mi is=\\\"true\\\">h</mi><mi is=\\\"true\\\">ν</mi></mrow><mo is=\\\"true\\\">+</mo></msubsup></math></script></span>) and superoxide radicals (<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#xB7;</mo><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">-</mo></msubsup></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -945.9 1707.5 1295.7\\\" width=\\\"3.966ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-22C5\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(278,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-4F\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(778,432)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2212\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(778,-278)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">-</mo></msubsup></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">-</mo></msubsup></mrow></math></script></span>) play the predominant roles, respectively, followed by hydroxyl radicals (<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#xB7;</mo><mtext is=\\\"true\\\">OH</mtext></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.086ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -796.9 1807.5 898.2\\\" width=\\\"4.198ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-22C5\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(278,0)\\\"><use xlink:href=\\\"#MJMAIN-4F\\\"></use><use x=\\\"778\\\" xlink:href=\\\"#MJMAIN-48\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><mtext is=\\\"true\\\">OH</mtext></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><mtext is=\\\"true\\\">OH</mtext></mrow></math></script></span>). The differences in heterojunction configuration and dominant active species result in a specific photocatalytic degradation behavior of ZnO-based composite nanostructures.<h3>Conclusion</h3>The generation of the active species are influenced by the heterojunction configurations, of which the essence is that the different band alignments can results in the differences of interfacial charge transfer behaviors, and thus selective generation of the active species such as <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">h</mtext><mrow is=\\\"true\\\"><mi is=\\\"true\\\">h</mi><mi is=\\\"true\\\">&#x3BD;</mi></mrow><mo is=\\\"true\\\">+</mo></msubsup></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -896.2 1439.3 1295.7\\\" width=\\\"3.343ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-68\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(556,422)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2B\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(556,-308)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-68\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(407,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-3BD\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">h</mtext><mrow is=\\\"true\\\"><mi is=\\\"true\\\">h</mi><mi is=\\\"true\\\">ν</mi></mrow><mo is=\\\"true\\\">+</mo></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">h</mtext><mrow is=\\\"true\\\"><mi is=\\\"true\\\">h</mi><mi is=\\\"true\\\">ν</mi></mrow><mo is=\\\"true\\\">+</mo></msubsup></math></script></span>, <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#xB7;</mo><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">-</mo></msubsup></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -945.9 1707.5 1295.7\\\" width=\\\"3.966ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-22C5\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(278,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-4F\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(778,432)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2212\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(778,-278)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">-</mo></msubsup></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">O</mtext><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">-</mo></msubsup></mrow></math></script></span> and <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#xB7;</mo><mtext is=\\\"true\\\">OH</mtext></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.086ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -796.9 1807.5 898.2\\\" width=\\\"4.198ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-22C5\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(278,0)\\\"><use xlink:href=\\\"#MJMAIN-4F\\\"></use><use x=\\\"778\\\" xlink:href=\\\"#MJMAIN-48\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><mtext is=\\\"true\\\">OH</mtext></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><mtext is=\\\"true\\\">OH</mtext></mrow></math></script></span>. Importantly, this work offers a fundamental understanding for specific photocatalytic degradation of the different heterojunction nanostructures towards the different organic dyes.\",\"PeriodicalId\":14952,\"journal\":{\"name\":\"Journal of Advanced Research\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2025.06.027\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.06.027","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Heterojunction configuration-specific photocatalytic degradation of methyl orange and methylene blue dyes using ZnO-based nanocomposites
Introduction
Heterostructured photocatalysts have shown an enormous potential in photocatalytic degradation of organic pollutants in wastewater. However, the efficacy of such heterojunction on the photocatalytic degradation behaviors has not yet been fully revealed.
Objectives
This work aims to demonstrate a specific photocatalytic degradation behavior of ZnO-based heterostructured nanocomposites toward methyl orange (MO) and methylene blue (MB) dyes based on a systematically comparative investigation for their physical and chemical properties.
Methods
A series of low-cost and efficient ZnO-based heterostructured nanocomposite photocatalysts including ZnO/CuO, ZnO/TiO2 and ZnO/SnO2 with 3 and 10 mol% of CuO/TiO2/SnO2 were synthesized by a simple strategy to combine the modified polymer-network gel and traditional sol–gel methods. The physical and chemical properties were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), ultraviolet–visible (UV–Vis) absorption spectra, photoluminescence (PL), surface photovoltage (SPV), electrochemical impedance spectroscopy (EIS) and zeta potential.
Results
Owing to the fast interfacial charge transfer at the heterojunction, all the three ZnO-based nanocomposite catalysts exhibited higher efficient separation of photogenerated electrons and holes, delivering an enhanced photocatalytic activity for the degradation of organic dyes compared with pure ZnO. Three photocatalysts of ZnO/3 %-CuO, ZnO/3 %-TiO2 and ZnO/10 %-SnO2 (marking as ZC3, ZT3 and ZS10, respectively) were capable of achieving the complete degradation of 4 mg/L concentration of MB dye within 50 min, and the first two could degrade MO within 80 min. However, the degradation rate of MO by ZS10 became significantly slower. For MO and MB degradation, the active species of photogenerated holes () and superoxide radicals () play the predominant roles, respectively, followed by hydroxyl radicals (). The differences in heterojunction configuration and dominant active species result in a specific photocatalytic degradation behavior of ZnO-based composite nanostructures.
Conclusion
The generation of the active species are influenced by the heterojunction configurations, of which the essence is that the different band alignments can results in the differences of interfacial charge transfer behaviors, and thus selective generation of the active species such as , and . Importantly, this work offers a fundamental understanding for specific photocatalytic degradation of the different heterojunction nanostructures towards the different organic dyes.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.