水葫芦启发的自浮光催化系统,用于高效和可持续的水净化

IF 11.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Josue Yaedalm Son, Yeseul Jo, Hyeran Lee, Youn Jeong Jang, Hyejeong Kim
{"title":"水葫芦启发的自浮光催化系统,用于高效和可持续的水净化","authors":"Josue Yaedalm Son, Yeseul Jo, Hyeran Lee, Youn Jeong Jang, Hyejeong Kim","doi":"10.1038/s41545-025-00486-y","DOIUrl":null,"url":null,"abstract":"<p>Photocatalytic water remediation is an effective approach for wastewater treatment; however, conventional powdered photocatalysts face challenges, including agglomeration, difficult separation, and inefficient light utilization due to their tendency to sink in water. Inspired by the buoyancy and water purification ability of water hyacinth, a self-floating photocatalytic system, Water Hyacinth-Inspired Purifier (WHIP), was developed by integrating TiO<sub>2</sub> photocatalysts onto a porous polydimethylsiloxane substrate, with a central closed-pore structure mimicking the sponge tissue of water hyacinth. This biomimetic design ensures stable flotation under static and dynamic flow conditions, maximizing light exposure for efficient photocatalysis. WHIP effectively degraded various contaminants, including methylene blue (99.5 ± 0.4%), rhodamine 6G (98.6 ± 1.5%), methyl orange (72.6 ± 6.4%), and nanoplastics. To assess its scalability and versatility, a large-scale WHIP incorporating a TiO<sub>2</sub>/graphdiyne photocatalyst was fabricated, achieving 94.9% methylene blue removal under real ambient conditions. These findings highlight WHIP’s potential as a sustainable environmental remediation technology.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"24 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water hyacinth-inspired self-floating photocatalytic system for efficient and sustainable water purification\",\"authors\":\"Josue Yaedalm Son, Yeseul Jo, Hyeran Lee, Youn Jeong Jang, Hyejeong Kim\",\"doi\":\"10.1038/s41545-025-00486-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photocatalytic water remediation is an effective approach for wastewater treatment; however, conventional powdered photocatalysts face challenges, including agglomeration, difficult separation, and inefficient light utilization due to their tendency to sink in water. Inspired by the buoyancy and water purification ability of water hyacinth, a self-floating photocatalytic system, Water Hyacinth-Inspired Purifier (WHIP), was developed by integrating TiO<sub>2</sub> photocatalysts onto a porous polydimethylsiloxane substrate, with a central closed-pore structure mimicking the sponge tissue of water hyacinth. This biomimetic design ensures stable flotation under static and dynamic flow conditions, maximizing light exposure for efficient photocatalysis. WHIP effectively degraded various contaminants, including methylene blue (99.5 ± 0.4%), rhodamine 6G (98.6 ± 1.5%), methyl orange (72.6 ± 6.4%), and nanoplastics. To assess its scalability and versatility, a large-scale WHIP incorporating a TiO<sub>2</sub>/graphdiyne photocatalyst was fabricated, achieving 94.9% methylene blue removal under real ambient conditions. These findings highlight WHIP’s potential as a sustainable environmental remediation technology.</p>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00486-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00486-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化水修复是一种有效的污水处理方法;然而,传统的粉状光催化剂由于容易在水中下沉而面临团聚、分离困难和光利用率低等问题。受水葫芦的浮力和水净化能力的启发,通过将TiO2光催化剂集成到多孔聚二甲基硅氧烷衬底上,开发了一种自漂浮的光催化系统——水葫芦启发净化器(water hyacinth -Inspired Purifier, WHIP),该系统具有模拟水葫芦海绵组织的中心闭孔结构。这种仿生设计确保在静态和动态流动条件下稳定的浮选,最大限度地提高光暴露的效率光催化。WHIP能有效降解亚甲蓝(99.5±0.4%)、罗丹明6G(98.6±1.5%)、甲基橙(72.6±6.4%)、纳米塑料等多种污染物。为了评估其可扩展性和通用性,我们制作了一个包含TiO2/石墨炔光催化剂的大型WHIP,在真实环境条件下,亚甲基蓝去除率达到94.9%。这些发现突出了WHIP作为一种可持续的环境修复技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Water hyacinth-inspired self-floating photocatalytic system for efficient and sustainable water purification

Water hyacinth-inspired self-floating photocatalytic system for efficient and sustainable water purification

Photocatalytic water remediation is an effective approach for wastewater treatment; however, conventional powdered photocatalysts face challenges, including agglomeration, difficult separation, and inefficient light utilization due to their tendency to sink in water. Inspired by the buoyancy and water purification ability of water hyacinth, a self-floating photocatalytic system, Water Hyacinth-Inspired Purifier (WHIP), was developed by integrating TiO2 photocatalysts onto a porous polydimethylsiloxane substrate, with a central closed-pore structure mimicking the sponge tissue of water hyacinth. This biomimetic design ensures stable flotation under static and dynamic flow conditions, maximizing light exposure for efficient photocatalysis. WHIP effectively degraded various contaminants, including methylene blue (99.5 ± 0.4%), rhodamine 6G (98.6 ± 1.5%), methyl orange (72.6 ± 6.4%), and nanoplastics. To assess its scalability and versatility, a large-scale WHIP incorporating a TiO2/graphdiyne photocatalyst was fabricated, achieving 94.9% methylene blue removal under real ambient conditions. These findings highlight WHIP’s potential as a sustainable environmental remediation technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信