评估阿尔茨海默病和额颞叶痴呆的脑电图复杂性和频谱特征:背侧-尾侧不对称的证据。

IF 4.1 Q2 GERIATRICS & GERONTOLOGY
Kassra Ghassemkhani, Kevin S Saroka, Blake T Dotta
{"title":"评估阿尔茨海默病和额颞叶痴呆的脑电图复杂性和频谱特征:背侧-尾侧不对称的证据。","authors":"Kassra Ghassemkhani, Kevin S Saroka, Blake T Dotta","doi":"10.1038/s41514-025-00243-y","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate classification of neurodegenerative disorders remains a challenge in neuroscience. Using open-source electroencephalography (EEG) data, we investigated electrophysiological signatures to differentiate frontotemporal dementia (FTD) from Alzheimer's disease (AD) via complexity measures. Traditional relative band power analysis showed consistent increases in lower-frequency activity but did not distinguish the two disorders after correction. In contrast, fractal dimension and long-range temporal correlations (LRTCs) revealed distinct topographical differences: AD exhibited rostral dominance in fractal dimension, whereas FTD showed caudal dominance. Both disorders demonstrated reduced LRTCs, particularly in caudal regions, indicating disrupted large-scale neural dynamics. These findings suggest that complexity-based EEG features may offer a reliable, cost-effective tool for distinguishing neurodegenerative conditions, complementing traditional neuroimaging approaches.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"11 1","pages":"50"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149297/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating EEG complexity and spectral signatures in Alzheimer's disease and frontotemporal dementia: evidence for rostrocaudal asymmetry.\",\"authors\":\"Kassra Ghassemkhani, Kevin S Saroka, Blake T Dotta\",\"doi\":\"10.1038/s41514-025-00243-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate classification of neurodegenerative disorders remains a challenge in neuroscience. Using open-source electroencephalography (EEG) data, we investigated electrophysiological signatures to differentiate frontotemporal dementia (FTD) from Alzheimer's disease (AD) via complexity measures. Traditional relative band power analysis showed consistent increases in lower-frequency activity but did not distinguish the two disorders after correction. In contrast, fractal dimension and long-range temporal correlations (LRTCs) revealed distinct topographical differences: AD exhibited rostral dominance in fractal dimension, whereas FTD showed caudal dominance. Both disorders demonstrated reduced LRTCs, particularly in caudal regions, indicating disrupted large-scale neural dynamics. These findings suggest that complexity-based EEG features may offer a reliable, cost-effective tool for distinguishing neurodegenerative conditions, complementing traditional neuroimaging approaches.</p>\",\"PeriodicalId\":94160,\"journal\":{\"name\":\"npj aging\",\"volume\":\"11 1\",\"pages\":\"50\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149297/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41514-025-00243-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-025-00243-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病的准确分类仍然是神经科学的一个挑战。利用开源的脑电图(EEG)数据,我们研究了通过复杂性测量区分额颞叶痴呆(FTD)和阿尔茨海默病(AD)的电生理特征。传统的相对频带功率分析显示低频活动一致增加,但校正后不能区分两种疾病。分形维数和长程时间相关性(LRTCs)显示出明显的地形差异:AD在分形维数上表现为吻侧优势,而FTD在分形维数上表现为尾侧优势。这两种疾病都表现出lrtc减少,特别是在尾侧区域,表明大规模神经动力学受到破坏。这些发现表明,基于复杂性的脑电图特征可能为区分神经退行性疾病提供可靠、经济的工具,补充了传统的神经影像学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating EEG complexity and spectral signatures in Alzheimer's disease and frontotemporal dementia: evidence for rostrocaudal asymmetry.

Accurate classification of neurodegenerative disorders remains a challenge in neuroscience. Using open-source electroencephalography (EEG) data, we investigated electrophysiological signatures to differentiate frontotemporal dementia (FTD) from Alzheimer's disease (AD) via complexity measures. Traditional relative band power analysis showed consistent increases in lower-frequency activity but did not distinguish the two disorders after correction. In contrast, fractal dimension and long-range temporal correlations (LRTCs) revealed distinct topographical differences: AD exhibited rostral dominance in fractal dimension, whereas FTD showed caudal dominance. Both disorders demonstrated reduced LRTCs, particularly in caudal regions, indicating disrupted large-scale neural dynamics. These findings suggest that complexity-based EEG features may offer a reliable, cost-effective tool for distinguishing neurodegenerative conditions, complementing traditional neuroimaging approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信