Jun-Hui Yang, Wen-Ling Du, Hao-Jie Tan, Yu-Xin Zong, Qing-Ning Wang, Bai-Song Zhao, Zhi-Guo Wang, Rui Zhang, Jia-Zhuang Xu and Zhong-Ming Li
{"title":"细胞外基质启发的天然聚合物基复合水凝胶敷料,用于感染伤口愈合。","authors":"Jun-Hui Yang, Wen-Ling Du, Hao-Jie Tan, Yu-Xin Zong, Qing-Ning Wang, Bai-Song Zhao, Zhi-Guo Wang, Rui Zhang, Jia-Zhuang Xu and Zhong-Ming Li","doi":"10.1039/D5TB00981B","DOIUrl":null,"url":null,"abstract":"<p >Developing an effective hydrogel dressing to protect against bacterial infection and exhibit synchronously integrated mechanical robustness and self-healing properties is highly desirable for infected wound healing in clinical practice. Inspired by the extracellular matrix (ECM), we constructed a dynamic and nondynamic synergy network to prepare a natural polymer-based composite hydrogel dressing for infected wound healing. The aldehyde groups of oxidized hyaluronic acid were bonded with amino groups of carboxymethyl chitosan and polyacrylamide (PAAm) <em>via</em> the Schiff base reaction to form a dynamic crosslinked network, mimicking the dynamically reversible glycosaminoglycan network in the ECM. A nondynamic PAAm network was created <em>via</em> UV-irradiated free radical polymerization, analogous to the covalently crosslinked collagen network in the ECM. The elaborate dynamic and nondynamic synergy network enabled the resultant hydrogel dressing to exhibit high mechanical strength and fatigue resistance, excellent self-healing properties and the remarkable antibacterial activity. An <em>in vivo Staphylococcus aureus</em>-infected full-thickness wound model revealed that our natural polymer-based composite hydrogel dressing significantly reduced inflammation and promoted the formation of granulation tissues and angiogenesis to achieve accelerated infected wound healing. This study offers a valuable reference for designing and fabricating multifunctional hydrogel dressings for treating wound infection.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 27","pages":" 8051-8058"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular matrix-inspired natural polymer-based composite hydrogel dressings for infected wound healing†\",\"authors\":\"Jun-Hui Yang, Wen-Ling Du, Hao-Jie Tan, Yu-Xin Zong, Qing-Ning Wang, Bai-Song Zhao, Zhi-Guo Wang, Rui Zhang, Jia-Zhuang Xu and Zhong-Ming Li\",\"doi\":\"10.1039/D5TB00981B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing an effective hydrogel dressing to protect against bacterial infection and exhibit synchronously integrated mechanical robustness and self-healing properties is highly desirable for infected wound healing in clinical practice. Inspired by the extracellular matrix (ECM), we constructed a dynamic and nondynamic synergy network to prepare a natural polymer-based composite hydrogel dressing for infected wound healing. The aldehyde groups of oxidized hyaluronic acid were bonded with amino groups of carboxymethyl chitosan and polyacrylamide (PAAm) <em>via</em> the Schiff base reaction to form a dynamic crosslinked network, mimicking the dynamically reversible glycosaminoglycan network in the ECM. A nondynamic PAAm network was created <em>via</em> UV-irradiated free radical polymerization, analogous to the covalently crosslinked collagen network in the ECM. The elaborate dynamic and nondynamic synergy network enabled the resultant hydrogel dressing to exhibit high mechanical strength and fatigue resistance, excellent self-healing properties and the remarkable antibacterial activity. An <em>in vivo Staphylococcus aureus</em>-infected full-thickness wound model revealed that our natural polymer-based composite hydrogel dressing significantly reduced inflammation and promoted the formation of granulation tissues and angiogenesis to achieve accelerated infected wound healing. This study offers a valuable reference for designing and fabricating multifunctional hydrogel dressings for treating wound infection.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 27\",\"pages\":\" 8051-8058\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00981b\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00981b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Developing an effective hydrogel dressing to protect against bacterial infection and exhibit synchronously integrated mechanical robustness and self-healing properties is highly desirable for infected wound healing in clinical practice. Inspired by the extracellular matrix (ECM), we constructed a dynamic and nondynamic synergy network to prepare a natural polymer-based composite hydrogel dressing for infected wound healing. The aldehyde groups of oxidized hyaluronic acid were bonded with amino groups of carboxymethyl chitosan and polyacrylamide (PAAm) via the Schiff base reaction to form a dynamic crosslinked network, mimicking the dynamically reversible glycosaminoglycan network in the ECM. A nondynamic PAAm network was created via UV-irradiated free radical polymerization, analogous to the covalently crosslinked collagen network in the ECM. The elaborate dynamic and nondynamic synergy network enabled the resultant hydrogel dressing to exhibit high mechanical strength and fatigue resistance, excellent self-healing properties and the remarkable antibacterial activity. An in vivo Staphylococcus aureus-infected full-thickness wound model revealed that our natural polymer-based composite hydrogel dressing significantly reduced inflammation and promoted the formation of granulation tissues and angiogenesis to achieve accelerated infected wound healing. This study offers a valuable reference for designing and fabricating multifunctional hydrogel dressings for treating wound infection.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices