经验抽样方法的新发展。

IF 1.8 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Francis Tuerlinckx, Peter Kuppens, Sigert Ariens, Leonie Cloos, Egon Dejonckheere, Ginette Lafit, Koen Niemeijer, Jordan Revol, Evelien Schat, Marieke Schreuder, Niels Vanhasbroeck, Eva Ceulemans
{"title":"经验抽样方法的新发展。","authors":"Francis Tuerlinckx, Peter Kuppens, Sigert Ariens, Leonie Cloos, Egon Dejonckheere, Ginette Lafit, Koen Niemeijer, Jordan Revol, Evelien Schat, Marieke Schreuder, Niels Vanhasbroeck, Eva Ceulemans","doi":"10.1111/bmsp.12398","DOIUrl":null,"url":null,"abstract":"<p><p>Experience Sampling Methodology (ESM) has been widely used over the past decades to study feelings, behaviour and thoughts as they occur in daily life. Typically, participants complete several assessments per day via a smartphone for multiple days. The growing adoption of ESM has spurred a number of methodological advancements. In this paper, we provide an overview of recent developments in ESM design, statistical analysis and implementation. In terms of design, we discuss considerations around what to measure-including the reliability and validity of self-report measures as well as mobile sensing-as well as when to measure, where we focus on the pros and cons of burst designs and advances in sample size planning methodology. Regarding statistical analysis, we highlight non-linear models, survival analysis for understanding time-to-event data and real-time monitoring of ESM time series. At the implementation level, we address open science practices and advances in data preprocessing. Although most of the topics discussed in this paper are generic, many of the examples are focused on the study of affect in daily life.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New developments in experience sampling methodology.\",\"authors\":\"Francis Tuerlinckx, Peter Kuppens, Sigert Ariens, Leonie Cloos, Egon Dejonckheere, Ginette Lafit, Koen Niemeijer, Jordan Revol, Evelien Schat, Marieke Schreuder, Niels Vanhasbroeck, Eva Ceulemans\",\"doi\":\"10.1111/bmsp.12398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Experience Sampling Methodology (ESM) has been widely used over the past decades to study feelings, behaviour and thoughts as they occur in daily life. Typically, participants complete several assessments per day via a smartphone for multiple days. The growing adoption of ESM has spurred a number of methodological advancements. In this paper, we provide an overview of recent developments in ESM design, statistical analysis and implementation. In terms of design, we discuss considerations around what to measure-including the reliability and validity of self-report measures as well as mobile sensing-as well as when to measure, where we focus on the pros and cons of burst designs and advances in sample size planning methodology. Regarding statistical analysis, we highlight non-linear models, survival analysis for understanding time-to-event data and real-time monitoring of ESM time series. At the implementation level, we address open science practices and advances in data preprocessing. Although most of the topics discussed in this paper are generic, many of the examples are focused on the study of affect in daily life.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12398\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12398","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,经验抽样方法(ESM)被广泛用于研究日常生活中的感受、行为和思想。通常,参与者每天通过智能手机完成几项评估,持续数天。ESM的日益普及推动了一些方法上的进步。在本文中,我们概述了ESM设计,统计分析和实施的最新发展。在设计方面,我们讨论了有关测量内容的考虑因素——包括自我报告测量的可靠性和有效性以及移动感知——以及何时测量,其中我们重点讨论了突发设计的优缺点和样本量规划方法的进展。在统计分析方面,我们强调非线性模型,生存分析以理解时间到事件数据和实时监测ESM时间序列。在实施层面,我们讨论了开放科学实践和数据预处理方面的进展。虽然本文讨论的大多数主题都是一般性的,但许多例子都集中在日常生活中的情感研究上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New developments in experience sampling methodology.

Experience Sampling Methodology (ESM) has been widely used over the past decades to study feelings, behaviour and thoughts as they occur in daily life. Typically, participants complete several assessments per day via a smartphone for multiple days. The growing adoption of ESM has spurred a number of methodological advancements. In this paper, we provide an overview of recent developments in ESM design, statistical analysis and implementation. In terms of design, we discuss considerations around what to measure-including the reliability and validity of self-report measures as well as mobile sensing-as well as when to measure, where we focus on the pros and cons of burst designs and advances in sample size planning methodology. Regarding statistical analysis, we highlight non-linear models, survival analysis for understanding time-to-event data and real-time monitoring of ESM time series. At the implementation level, we address open science practices and advances in data preprocessing. Although most of the topics discussed in this paper are generic, many of the examples are focused on the study of affect in daily life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信