生长速度与氧化应激的减少有关,这种影响是由雄性非洲慈鲷的社会支配程度调节的。

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Peter D. Dijkstra
{"title":"生长速度与氧化应激的减少有关,这种影响是由雄性非洲慈鲷的社会支配程度调节的。","authors":"Peter D. Dijkstra","doi":"10.1016/j.cbpa.2025.111892","DOIUrl":null,"url":null,"abstract":"<div><div>Attaining large body size has several selective benefits, however, increased growth rate has potential costs that can constrain investment in other life history traits, such as reproductive output and territorial defense. Oxidative stress can both constrain and result from growth, potentially mediating life history trade-offs between growth rate and other life history traits. Studies on the oxidative cost of growth have provided mixed evidence, in part because components of oxidative balance, including oxidative damage and antioxidant function, is influenced by investment in other activities in a tissue-specific manner. Here, I examined how among-individual variation in growth rate is linked to oxidative stress, and how this relationship is influenced by markers of social dominance (aggressiveness and relative gonad size) in males of the cichlid fish <em>Astatotilapa burtoni</em>. To this end, 7 markers of oxidative damage and antioxidant function in various tissue types (total of 14 measurements) were assessed in dominant and subordinate males. I found that dominant males grew faster than subordinate males. However, increased growth was linked to reduced oxidative stress. This effect was independent of social status but modulated by the degree of social dominance. Overall, the results are consistent with oxidative stress mediating the link between growth and other life history traits. However, my findings challenge the idea that increased growth rate results in elevated oxidative stress, perhaps due to effective protective mechanisms that can neutralize the oxidative challenge of growth.</div></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"307 ","pages":"Article 111892"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth rate is associated with reduced oxidative stress and this effect is modulated by the degree of social dominance in males of an African cichlid fish\",\"authors\":\"Peter D. Dijkstra\",\"doi\":\"10.1016/j.cbpa.2025.111892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Attaining large body size has several selective benefits, however, increased growth rate has potential costs that can constrain investment in other life history traits, such as reproductive output and territorial defense. Oxidative stress can both constrain and result from growth, potentially mediating life history trade-offs between growth rate and other life history traits. Studies on the oxidative cost of growth have provided mixed evidence, in part because components of oxidative balance, including oxidative damage and antioxidant function, is influenced by investment in other activities in a tissue-specific manner. Here, I examined how among-individual variation in growth rate is linked to oxidative stress, and how this relationship is influenced by markers of social dominance (aggressiveness and relative gonad size) in males of the cichlid fish <em>Astatotilapa burtoni</em>. To this end, 7 markers of oxidative damage and antioxidant function in various tissue types (total of 14 measurements) were assessed in dominant and subordinate males. I found that dominant males grew faster than subordinate males. However, increased growth was linked to reduced oxidative stress. This effect was independent of social status but modulated by the degree of social dominance. Overall, the results are consistent with oxidative stress mediating the link between growth and other life history traits. However, my findings challenge the idea that increased growth rate results in elevated oxidative stress, perhaps due to effective protective mechanisms that can neutralize the oxidative challenge of growth.</div></div>\",\"PeriodicalId\":55237,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology\",\"volume\":\"307 \",\"pages\":\"Article 111892\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S109564332500090X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109564332500090X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

获得较大的体型有几个选择性的好处,然而,增加的生长速度有潜在的成本,可能会限制对其他生活史特征的投资,如生殖产量和领土防御。氧化应激既可以抑制生长,也可以导致生长,潜在地调节生长速度和其他生活史特征之间的生活史权衡。关于生长的氧化成本的研究提供了不同的证据,部分原因是氧化平衡的组成部分,包括氧化损伤和抗氧化功能,以组织特异性的方式受到其他活动投资的影响。在这里,我研究了生长速率的个体差异是如何与氧化应激联系在一起的,以及这种关系是如何受到社会优势标志(攻击性和相对性腺大小)的影响的。为此,研究了雄、幼雄性各组织类型的7种氧化损伤和抗氧化功能指标(共14项)。我发现占主导地位的雄性比从属的雄性长得快。然而,生长的增加与氧化应激的减少有关。这种影响与社会地位无关,但受社会支配程度的调节。总的来说,结果与氧化应激介导生长和其他生活史特征之间的联系是一致的。然而,我的研究结果挑战了生长速度增加导致氧化应激升高的观点,这可能是由于有效的保护机制可以中和生长的氧化挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Growth rate is associated with reduced oxidative stress and this effect is modulated by the degree of social dominance in males of an African cichlid fish

Growth rate is associated with reduced oxidative stress and this effect is modulated by the degree of social dominance in males of an African cichlid fish
Attaining large body size has several selective benefits, however, increased growth rate has potential costs that can constrain investment in other life history traits, such as reproductive output and territorial defense. Oxidative stress can both constrain and result from growth, potentially mediating life history trade-offs between growth rate and other life history traits. Studies on the oxidative cost of growth have provided mixed evidence, in part because components of oxidative balance, including oxidative damage and antioxidant function, is influenced by investment in other activities in a tissue-specific manner. Here, I examined how among-individual variation in growth rate is linked to oxidative stress, and how this relationship is influenced by markers of social dominance (aggressiveness and relative gonad size) in males of the cichlid fish Astatotilapa burtoni. To this end, 7 markers of oxidative damage and antioxidant function in various tissue types (total of 14 measurements) were assessed in dominant and subordinate males. I found that dominant males grew faster than subordinate males. However, increased growth was linked to reduced oxidative stress. This effect was independent of social status but modulated by the degree of social dominance. Overall, the results are consistent with oxidative stress mediating the link between growth and other life history traits. However, my findings challenge the idea that increased growth rate results in elevated oxidative stress, perhaps due to effective protective mechanisms that can neutralize the oxidative challenge of growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.30%
发文量
155
审稿时长
3 months
期刊介绍: Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信