Naz Şerifoğlu, Giulia Allavena, Bruno Lopes-Bastos, Marta Marzullo, Andreia Marques, Pauline Colibert, Pavlos Bousounis, Eirini Trompouki, Miguel Godinho Ferreira
{"title":"cGAS-STING与端粒酶缺陷斑马鱼的早衰有关。","authors":"Naz Şerifoğlu, Giulia Allavena, Bruno Lopes-Bastos, Marta Marzullo, Andreia Marques, Pauline Colibert, Pavlos Bousounis, Eirini Trompouki, Miguel Godinho Ferreira","doi":"10.1038/s44318-025-00482-5","DOIUrl":null,"url":null,"abstract":"<p><p>Telomere shortening occurs in multiple tissues throughout aging. When telomeres become critically short, they trigger DNA-damage responses and p53 stabilization, leading to apoptosis or replicative senescence. In vitro, cells with short telomeres activate the cGAS-STING innate immune pathway resulting in type-I interferon-based inflammation and senescence. However, the consequences of these events for the organism are not yet understood. Here, we show that sting is responsible for premature aging of telomerase-deficient zebrafish. We generated sting-/- tert-/- double-mutant animals and observed a thorough rescue of tert-/- phenotypes. At the cellular level, lack of cGAS-STING in tert mutants resulted in reduced senescence, increased cell proliferation, and decreased inflammation despite similarly short telomeres. Critically, absence of sting function resulted in dampening of the DNA damage response and reduced p53 levels. At the organism level, sting-/- tert-/- zebrafish regained fertility, showed delayed cachexia, and decreased cancer incidence, resulting in increased healthspan and lifespan of telomerase mutant animals.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4666-4680"},"PeriodicalIF":8.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12402478/pdf/","citationCount":"0","resultStr":"{\"title\":\"cGAS-STING are responsible for premature aging of telomerase-deficient zebrafish.\",\"authors\":\"Naz Şerifoğlu, Giulia Allavena, Bruno Lopes-Bastos, Marta Marzullo, Andreia Marques, Pauline Colibert, Pavlos Bousounis, Eirini Trompouki, Miguel Godinho Ferreira\",\"doi\":\"10.1038/s44318-025-00482-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Telomere shortening occurs in multiple tissues throughout aging. When telomeres become critically short, they trigger DNA-damage responses and p53 stabilization, leading to apoptosis or replicative senescence. In vitro, cells with short telomeres activate the cGAS-STING innate immune pathway resulting in type-I interferon-based inflammation and senescence. However, the consequences of these events for the organism are not yet understood. Here, we show that sting is responsible for premature aging of telomerase-deficient zebrafish. We generated sting-/- tert-/- double-mutant animals and observed a thorough rescue of tert-/- phenotypes. At the cellular level, lack of cGAS-STING in tert mutants resulted in reduced senescence, increased cell proliferation, and decreased inflammation despite similarly short telomeres. Critically, absence of sting function resulted in dampening of the DNA damage response and reduced p53 levels. At the organism level, sting-/- tert-/- zebrafish regained fertility, showed delayed cachexia, and decreased cancer incidence, resulting in increased healthspan and lifespan of telomerase mutant animals.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":\" \",\"pages\":\"4666-4680\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12402478/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00482-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00482-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
cGAS-STING are responsible for premature aging of telomerase-deficient zebrafish.
Telomere shortening occurs in multiple tissues throughout aging. When telomeres become critically short, they trigger DNA-damage responses and p53 stabilization, leading to apoptosis or replicative senescence. In vitro, cells with short telomeres activate the cGAS-STING innate immune pathway resulting in type-I interferon-based inflammation and senescence. However, the consequences of these events for the organism are not yet understood. Here, we show that sting is responsible for premature aging of telomerase-deficient zebrafish. We generated sting-/- tert-/- double-mutant animals and observed a thorough rescue of tert-/- phenotypes. At the cellular level, lack of cGAS-STING in tert mutants resulted in reduced senescence, increased cell proliferation, and decreased inflammation despite similarly short telomeres. Critically, absence of sting function resulted in dampening of the DNA damage response and reduced p53 levels. At the organism level, sting-/- tert-/- zebrafish regained fertility, showed delayed cachexia, and decreased cancer incidence, resulting in increased healthspan and lifespan of telomerase mutant animals.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.