重组artLCMV结合局部细胞因子传递和全身免疫,在几种临床前肿瘤模型中增强了抗肿瘤效果。

IF 6.5 2区 医学 Q1 IMMUNOLOGY
Oncoimmunology Pub Date : 2025-12-01 Epub Date: 2025-06-10 DOI:10.1080/2162402X.2025.2514040
Kimberly Pojar, Diana Reckendorfer, Judith Strauss, Sarah Szaffich, Sarah Ahmadi-Erber, Timo Schippers, Pedro Berraondo, Klaus K Orlinger, Josipa Raguz, Henning Lauterbach
{"title":"重组artLCMV结合局部细胞因子传递和全身免疫,在几种临床前肿瘤模型中增强了抗肿瘤效果。","authors":"Kimberly Pojar, Diana Reckendorfer, Judith Strauss, Sarah Szaffich, Sarah Ahmadi-Erber, Timo Schippers, Pedro Berraondo, Klaus K Orlinger, Josipa Raguz, Henning Lauterbach","doi":"10.1080/2162402X.2025.2514040","DOIUrl":null,"url":null,"abstract":"<p><p>Among the plethora of cancer immune evasion mechanisms, T-cell-inhibiting factors within the tumor microenvironment impose a major challenge for the development of novel immunotherapies. Strategies to overcome immunosuppression and remodel the TME are therefore urgently needed. Therapeutic cancer vaccines based on engineered arenaviruses have been proven to generate potent tumor specific CD8+ T-cell responses in preclinical models and cancer patients. Despite signs of clinical activity as monotherapy, combination therapies are needed to further increase the therapeutic effect. To address this need, we evaluated the efficacy of recombinant vectors based on lymphocytic choriomeningitis virus encoding the T-cell stimulating cytokines IL-7, IL-12 and IL-15 with or without tumor-associated antigens. These vectors were tested in three different mouse tumor models (TC-1, MC-38 and B16.F10). Our results demonstrate that only IL-12 encoding vectors led to increased immunogenicity and efficacy, which, after systemic administration, was associated with adverse events. The safest and most potent regimen consisted of systemic vaccination with tumor antigen encoding vectors and local injection of IL-12-encoding vectors. A single round of this treatment regimen resulted in 86-100% tumor-free mice and warrants further investigation.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2514040"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153391/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combining local cytokine delivery and systemic immunization with recombinant artLCMV boosts antitumor efficacy in several preclinical tumor models.\",\"authors\":\"Kimberly Pojar, Diana Reckendorfer, Judith Strauss, Sarah Szaffich, Sarah Ahmadi-Erber, Timo Schippers, Pedro Berraondo, Klaus K Orlinger, Josipa Raguz, Henning Lauterbach\",\"doi\":\"10.1080/2162402X.2025.2514040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Among the plethora of cancer immune evasion mechanisms, T-cell-inhibiting factors within the tumor microenvironment impose a major challenge for the development of novel immunotherapies. Strategies to overcome immunosuppression and remodel the TME are therefore urgently needed. Therapeutic cancer vaccines based on engineered arenaviruses have been proven to generate potent tumor specific CD8+ T-cell responses in preclinical models and cancer patients. Despite signs of clinical activity as monotherapy, combination therapies are needed to further increase the therapeutic effect. To address this need, we evaluated the efficacy of recombinant vectors based on lymphocytic choriomeningitis virus encoding the T-cell stimulating cytokines IL-7, IL-12 and IL-15 with or without tumor-associated antigens. These vectors were tested in three different mouse tumor models (TC-1, MC-38 and B16.F10). Our results demonstrate that only IL-12 encoding vectors led to increased immunogenicity and efficacy, which, after systemic administration, was associated with adverse events. The safest and most potent regimen consisted of systemic vaccination with tumor antigen encoding vectors and local injection of IL-12-encoding vectors. A single round of this treatment regimen resulted in 86-100% tumor-free mice and warrants further investigation.</p>\",\"PeriodicalId\":48714,\"journal\":{\"name\":\"Oncoimmunology\",\"volume\":\"14 1\",\"pages\":\"2514040\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153391/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncoimmunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/2162402X.2025.2514040\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/2162402X.2025.2514040","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在众多癌症免疫逃避机制中,肿瘤微环境中的t细胞抑制因子对新型免疫疗法的发展提出了重大挑战。因此,迫切需要克服免疫抑制和改造TME的策略。基于工程沙粒病毒的治疗性癌症疫苗已被证明在临床前模型和癌症患者中产生有效的肿瘤特异性CD8+ t细胞反应。尽管单药治疗有临床活性迹象,但需要联合治疗以进一步提高治疗效果。为了满足这一需求,我们评估了基于淋巴细胞脉络丛脑膜炎病毒的重组载体的有效性,该载体编码t细胞刺激因子IL-7、IL-12和IL-15,有或没有肿瘤相关抗原。这些载体在三种不同的小鼠肿瘤模型(TC-1、MC-38和B16.F10)中进行了测试。我们的研究结果表明,只有IL-12编码载体才能提高免疫原性和有效性,在全身给药后,这与不良事件有关。最安全、最有效的方案是全身接种肿瘤抗原编码载体和局部注射il -12编码载体。单轮治疗方案导致86-100%的小鼠无肿瘤,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining local cytokine delivery and systemic immunization with recombinant artLCMV boosts antitumor efficacy in several preclinical tumor models.

Among the plethora of cancer immune evasion mechanisms, T-cell-inhibiting factors within the tumor microenvironment impose a major challenge for the development of novel immunotherapies. Strategies to overcome immunosuppression and remodel the TME are therefore urgently needed. Therapeutic cancer vaccines based on engineered arenaviruses have been proven to generate potent tumor specific CD8+ T-cell responses in preclinical models and cancer patients. Despite signs of clinical activity as monotherapy, combination therapies are needed to further increase the therapeutic effect. To address this need, we evaluated the efficacy of recombinant vectors based on lymphocytic choriomeningitis virus encoding the T-cell stimulating cytokines IL-7, IL-12 and IL-15 with or without tumor-associated antigens. These vectors were tested in three different mouse tumor models (TC-1, MC-38 and B16.F10). Our results demonstrate that only IL-12 encoding vectors led to increased immunogenicity and efficacy, which, after systemic administration, was associated with adverse events. The safest and most potent regimen consisted of systemic vaccination with tumor antigen encoding vectors and local injection of IL-12-encoding vectors. A single round of this treatment regimen resulted in 86-100% tumor-free mice and warrants further investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncoimmunology
Oncoimmunology ONCOLOGYIMMUNOLOGY-IMMUNOLOGY
CiteScore
12.50
自引率
2.80%
发文量
276
审稿时长
24 weeks
期刊介绍: OncoImmunology is a dynamic, high-profile, open access journal that comprehensively covers tumor immunology and immunotherapy. As cancer immunotherapy advances, OncoImmunology is committed to publishing top-tier research encompassing all facets of basic and applied tumor immunology. The journal covers a wide range of topics, including: -Basic and translational studies in immunology of both solid and hematological malignancies -Inflammation, innate and acquired immune responses against cancer -Mechanisms of cancer immunoediting and immune evasion -Modern immunotherapies, including immunomodulators, immune checkpoint inhibitors, T-cell, NK-cell, and macrophage engagers, and CAR T cells -Immunological effects of conventional anticancer therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信