CS-KG 2.0:计算机科学的大规模知识图谱。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Danilo Dessí, Francesco Osborne, Davide Buscaldi, Diego Reforgiato Recupero, Enrico Motta
{"title":"CS-KG 2.0:计算机科学的大规模知识图谱。","authors":"Danilo Dessí, Francesco Osborne, Davide Buscaldi, Diego Reforgiato Recupero, Enrico Motta","doi":"10.1038/s41597-025-05200-8","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid evolution of AI and the increased accessibility of scientific articles through open access marks a pivotal moment in research. AI-driven tools are reshaping how scientists explore, interpret, and contribute to the body of scientific knowledge, offering unprecedented opportunities. Nonetheless, a significant challenge remains: dealing with the overwhelming number of papers published every year. A promising solution is the use of knowledge graphs, which provide structured, interconnected, and formalized frameworks that improve the capabilities of AI systems to integrate information from the literature. This paper presents the last version of the Computer Science Knowledge Graph (CS-KG 2.0), an extensive knowledge base generated from 15 million research papers. CS-KG 2.0 describes 25 million entities linked by 67 million relationships, offering a nuanced representation of the scientific knowledge within the field of computer science. This innovative resource facilitates new research opportunities in key areas such as analysis and forecasting of research trends, hypothesis generation, smart literature search, automatic production of literature review, and scientific question-answering.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"964"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149285/pdf/","citationCount":"0","resultStr":"{\"title\":\"CS-KG 2.0: A Large-scale Knowledge Graph of Computer Science.\",\"authors\":\"Danilo Dessí, Francesco Osborne, Davide Buscaldi, Diego Reforgiato Recupero, Enrico Motta\",\"doi\":\"10.1038/s41597-025-05200-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid evolution of AI and the increased accessibility of scientific articles through open access marks a pivotal moment in research. AI-driven tools are reshaping how scientists explore, interpret, and contribute to the body of scientific knowledge, offering unprecedented opportunities. Nonetheless, a significant challenge remains: dealing with the overwhelming number of papers published every year. A promising solution is the use of knowledge graphs, which provide structured, interconnected, and formalized frameworks that improve the capabilities of AI systems to integrate information from the literature. This paper presents the last version of the Computer Science Knowledge Graph (CS-KG 2.0), an extensive knowledge base generated from 15 million research papers. CS-KG 2.0 describes 25 million entities linked by 67 million relationships, offering a nuanced representation of the scientific knowledge within the field of computer science. This innovative resource facilitates new research opportunities in key areas such as analysis and forecasting of research trends, hypothesis generation, smart literature search, automatic production of literature review, and scientific question-answering.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"964\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149285/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-05200-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05200-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人工智能的快速发展和通过开放获取增加的科学文章可及性标志着研究的关键时刻。人工智能驱动的工具正在重塑科学家探索、解释和贡献科学知识体系的方式,提供了前所未有的机会。尽管如此,一个重大的挑战仍然存在:如何处理每年发表的大量论文。一个很有前途的解决方案是使用知识图,它提供了结构化的、相互关联的和形式化的框架,提高了人工智能系统整合文献信息的能力。本文介绍了计算机科学知识图谱(CS-KG 2.0)的最新版本,这是一个从1500万篇研究论文中生成的广泛知识库。CS-KG 2.0描述了由6700万个关系连接的2500万个实体,为计算机科学领域的科学知识提供了细致入微的表示。这一创新资源促进了关键领域的新研究机会,如研究趋势的分析和预测、假设生成、智能文献搜索、文献综述的自动生成和科学问答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CS-KG 2.0: A Large-scale Knowledge Graph of Computer Science.

CS-KG 2.0: A Large-scale Knowledge Graph of Computer Science.

CS-KG 2.0: A Large-scale Knowledge Graph of Computer Science.

CS-KG 2.0: A Large-scale Knowledge Graph of Computer Science.

The rapid evolution of AI and the increased accessibility of scientific articles through open access marks a pivotal moment in research. AI-driven tools are reshaping how scientists explore, interpret, and contribute to the body of scientific knowledge, offering unprecedented opportunities. Nonetheless, a significant challenge remains: dealing with the overwhelming number of papers published every year. A promising solution is the use of knowledge graphs, which provide structured, interconnected, and formalized frameworks that improve the capabilities of AI systems to integrate information from the literature. This paper presents the last version of the Computer Science Knowledge Graph (CS-KG 2.0), an extensive knowledge base generated from 15 million research papers. CS-KG 2.0 describes 25 million entities linked by 67 million relationships, offering a nuanced representation of the scientific knowledge within the field of computer science. This innovative resource facilitates new research opportunities in key areas such as analysis and forecasting of research trends, hypothesis generation, smart literature search, automatic production of literature review, and scientific question-answering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信