来自Meta和b谷歌的可比较2022年大选广告数据集。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Meiqing Zhang, Furkan Cakmak, Markus Neumann, Sebastian Zimmeck, Pavel Oleinikov, Jielu Yao, Harry Yu, Aleks Jacewicz, Isabella Tassone, Breeze Floyd, Laura Baum, Michael M Franz, Travis N Ridout, Erika Franklin Fowler
{"title":"来自Meta和b谷歌的可比较2022年大选广告数据集。","authors":"Meiqing Zhang, Furkan Cakmak, Markus Neumann, Sebastian Zimmeck, Pavel Oleinikov, Jielu Yao, Harry Yu, Aleks Jacewicz, Isabella Tassone, Breeze Floyd, Laura Baum, Michael M Franz, Travis N Ridout, Erika Franklin Fowler","doi":"10.1038/s41597-025-05228-w","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces two comprehensive datasets containing information on digital ads in U.S. federal elections from Meta (including Facebook and Instagram) and Google (including YouTube) for the 2022 midterm general election period. We collected ads published on these platforms utilizing their ad transparency libraries and web scraping techniques and added labels to make them more comparable. The collected data underwent processing to extract audiovisual and textual information through automatic speech recognition (ASR), face recognition, and optical character recognition (OCR). Additionally, we performed several classification tasks to enhance the utility of the dataset. The resulting datasets encompass a rich array of features, including metadata, transcripts, and classifications. These datasets provide valuable resources for researchers, policymakers, and journalists to analyze the digital election advertising landscape, campaign strategies, and public engagement. By offering detailed and structured data, our work facilitates diverse reuse possibilities in fields such as political science, communication studies, and data science, enabling comprehensive analysis and insights into the dynamics of digital political campaigns.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"968"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149306/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparable 2022 General Election Advertising Datasets from Meta and Google.\",\"authors\":\"Meiqing Zhang, Furkan Cakmak, Markus Neumann, Sebastian Zimmeck, Pavel Oleinikov, Jielu Yao, Harry Yu, Aleks Jacewicz, Isabella Tassone, Breeze Floyd, Laura Baum, Michael M Franz, Travis N Ridout, Erika Franklin Fowler\",\"doi\":\"10.1038/s41597-025-05228-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces two comprehensive datasets containing information on digital ads in U.S. federal elections from Meta (including Facebook and Instagram) and Google (including YouTube) for the 2022 midterm general election period. We collected ads published on these platforms utilizing their ad transparency libraries and web scraping techniques and added labels to make them more comparable. The collected data underwent processing to extract audiovisual and textual information through automatic speech recognition (ASR), face recognition, and optical character recognition (OCR). Additionally, we performed several classification tasks to enhance the utility of the dataset. The resulting datasets encompass a rich array of features, including metadata, transcripts, and classifications. These datasets provide valuable resources for researchers, policymakers, and journalists to analyze the digital election advertising landscape, campaign strategies, and public engagement. By offering detailed and structured data, our work facilitates diverse reuse possibilities in fields such as political science, communication studies, and data science, enabling comprehensive analysis and insights into the dynamics of digital political campaigns.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"968\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149306/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-05228-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05228-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了两个综合数据集,其中包含2022年中期大选期间来自Meta(包括Facebook和Instagram)和谷歌(包括YouTube)的美国联邦选举中的数字广告信息。我们利用这些平台的广告透明度库和网络抓取技术收集发布在这些平台上的广告,并添加标签,使它们更具可比性。对采集的数据进行自动语音识别(ASR)、人脸识别(face recognition)、光学字符识别(OCR)等处理,提取音视频和文本信息。此外,我们执行了几个分类任务来增强数据集的实用性。生成的数据集包含丰富的特性,包括元数据、记录和分类。这些数据集为研究人员、政策制定者和记者分析数字选举广告格局、竞选策略和公众参与提供了宝贵的资源。通过提供详细和结构化的数据,我们的工作促进了政治学、传播学和数据科学等领域的多种重用可能性,从而能够全面分析和洞察数字政治运动的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparable 2022 General Election Advertising Datasets from Meta and Google.

Comparable 2022 General Election Advertising Datasets from Meta and Google.

Comparable 2022 General Election Advertising Datasets from Meta and Google.

Comparable 2022 General Election Advertising Datasets from Meta and Google.

This paper introduces two comprehensive datasets containing information on digital ads in U.S. federal elections from Meta (including Facebook and Instagram) and Google (including YouTube) for the 2022 midterm general election period. We collected ads published on these platforms utilizing their ad transparency libraries and web scraping techniques and added labels to make them more comparable. The collected data underwent processing to extract audiovisual and textual information through automatic speech recognition (ASR), face recognition, and optical character recognition (OCR). Additionally, we performed several classification tasks to enhance the utility of the dataset. The resulting datasets encompass a rich array of features, including metadata, transcripts, and classifications. These datasets provide valuable resources for researchers, policymakers, and journalists to analyze the digital election advertising landscape, campaign strategies, and public engagement. By offering detailed and structured data, our work facilitates diverse reuse possibilities in fields such as political science, communication studies, and data science, enabling comprehensive analysis and insights into the dynamics of digital political campaigns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信