基于重叠视场域和集成Kolmogorov-Arnold网络的增强行人轨迹预测。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-06-09 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0322722
Hongxia Wang, Yang Liu, Zhenkai Nie
{"title":"基于重叠视场域和集成Kolmogorov-Arnold网络的增强行人轨迹预测。","authors":"Hongxia Wang, Yang Liu, Zhenkai Nie","doi":"10.1371/journal.pone.0322722","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate pedestrian trajectory prediction is crucial for applications such as autonomous driving and crowd surveillance. This paper proposes the OV-SKTGCNN model, an enhancement to the Social-STGCNN model, aimed at addressing its low prediction accuracy and limitations in dealing with forces between pedestrians. By rigorously dividing monocular and binocular overlapping visual regions and utilizing different influence factors, the model pedestrian interactions more realistically. The Kolmogorov-Arnold Networks (KANs) combined with Temporal Convolutional Networks (TCNs) greatly improve the ability to extract temporal features. Experimental results on the ETH and UCY datasets demonstrate that the model reduces the Final Displacement Error (FDE) by an average of 23% and the Average Displacement Error (ADE) by 18% compared to Social-STGCNN. The proposed OV-SKTGCNN model demonstrates improved prediction accuracy and better captures the subtleties of pedestrian movements.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 6","pages":"e0322722"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148101/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced pedestrian trajectory prediction via overlapping field-of-view domains and integrated Kolmogorov-Arnold networks.\",\"authors\":\"Hongxia Wang, Yang Liu, Zhenkai Nie\",\"doi\":\"10.1371/journal.pone.0322722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate pedestrian trajectory prediction is crucial for applications such as autonomous driving and crowd surveillance. This paper proposes the OV-SKTGCNN model, an enhancement to the Social-STGCNN model, aimed at addressing its low prediction accuracy and limitations in dealing with forces between pedestrians. By rigorously dividing monocular and binocular overlapping visual regions and utilizing different influence factors, the model pedestrian interactions more realistically. The Kolmogorov-Arnold Networks (KANs) combined with Temporal Convolutional Networks (TCNs) greatly improve the ability to extract temporal features. Experimental results on the ETH and UCY datasets demonstrate that the model reduces the Final Displacement Error (FDE) by an average of 23% and the Average Displacement Error (ADE) by 18% compared to Social-STGCNN. The proposed OV-SKTGCNN model demonstrates improved prediction accuracy and better captures the subtleties of pedestrian movements.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 6\",\"pages\":\"e0322722\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148101/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0322722\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0322722","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

准确的行人轨迹预测对于自动驾驶和人群监控等应用至关重要。本文提出了OV-SKTGCNN模型,这是对Social-STGCNN模型的增强,旨在解决其预测精度低和处理行人之间的力量的局限性。通过严格划分单眼和双眼重叠视觉区域,并利用不同的影响因素,使模型更加真实。Kolmogorov-Arnold网络(KANs)与时间卷积网络(TCNs)相结合,极大地提高了提取时间特征的能力。在ETH和UCY数据集上的实验结果表明,与Social-STGCNN相比,该模型的最终位移误差(FDE)平均降低了23%,平均位移误差(ADE)平均降低了18%。所提出的OV-SKTGCNN模型显示了更高的预测精度,并更好地捕捉了行人运动的细微之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced pedestrian trajectory prediction via overlapping field-of-view domains and integrated Kolmogorov-Arnold networks.

Accurate pedestrian trajectory prediction is crucial for applications such as autonomous driving and crowd surveillance. This paper proposes the OV-SKTGCNN model, an enhancement to the Social-STGCNN model, aimed at addressing its low prediction accuracy and limitations in dealing with forces between pedestrians. By rigorously dividing monocular and binocular overlapping visual regions and utilizing different influence factors, the model pedestrian interactions more realistically. The Kolmogorov-Arnold Networks (KANs) combined with Temporal Convolutional Networks (TCNs) greatly improve the ability to extract temporal features. Experimental results on the ETH and UCY datasets demonstrate that the model reduces the Final Displacement Error (FDE) by an average of 23% and the Average Displacement Error (ADE) by 18% compared to Social-STGCNN. The proposed OV-SKTGCNN model demonstrates improved prediction accuracy and better captures the subtleties of pedestrian movements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信