光合型与非光合型FNRs对电子转移活性负协同性和pH依赖性的差异调控。

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yoko Kimata-Ariga, Shunsuke Miyake, Takato Murakami, Shunsuke Kuwano
{"title":"光合型与非光合型FNRs对电子转移活性负协同性和pH依赖性的差异调控。","authors":"Yoko Kimata-Ariga, Shunsuke Miyake, Takato Murakami, Shunsuke Kuwano","doi":"10.1093/jb/mvaf031","DOIUrl":null,"url":null,"abstract":"<p><p>In higher plants, ferredoxin (Fd) and Fd-NADP+ reductase (FNR) are each present as distinct isoproteins of photosynthetic type and non-photosynthetic type, which exhibit differential function despite their similarity in the 3D structures. In this study, we addressed differential regulation of Fd/FNR reaction between the two types from two perspectives and investigated the amino acid residues of Fd responsible for the differences. Firstly, pH-dependent profile of Fd/FNR electron transfer activity varied among the combinations of the two types of Fd and FNR; non-photosynthetic type FNR showed similar pattern for the two types of Fds while photosynthetic type FNR was previously shown to exhibit opposite pattern which was explained by the different pH-dependent profile of Km for the two Fds. Secondly, the extent of the suppression of the affinity (in terms of Km value) between Fd and FNR by NADPH significantly varied among the combinations of the two types of Fd:FNR. The difference was shown to be mainly due to the different property of Fd between the two types. Kinetic analyses using site-directed mutants of Fd showed the contribution of C-terminal residues, together with that of 78th residue of Fd, on the differential profile of Fd/FNR reaction by pH and NADPH.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential regulation between photosynthetic type and non-photosynthetic type Fd:FNRs in the negative cooperativity and pH dependency of the electron transfer activity.\",\"authors\":\"Yoko Kimata-Ariga, Shunsuke Miyake, Takato Murakami, Shunsuke Kuwano\",\"doi\":\"10.1093/jb/mvaf031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In higher plants, ferredoxin (Fd) and Fd-NADP+ reductase (FNR) are each present as distinct isoproteins of photosynthetic type and non-photosynthetic type, which exhibit differential function despite their similarity in the 3D structures. In this study, we addressed differential regulation of Fd/FNR reaction between the two types from two perspectives and investigated the amino acid residues of Fd responsible for the differences. Firstly, pH-dependent profile of Fd/FNR electron transfer activity varied among the combinations of the two types of Fd and FNR; non-photosynthetic type FNR showed similar pattern for the two types of Fds while photosynthetic type FNR was previously shown to exhibit opposite pattern which was explained by the different pH-dependent profile of Km for the two Fds. Secondly, the extent of the suppression of the affinity (in terms of Km value) between Fd and FNR by NADPH significantly varied among the combinations of the two types of Fd:FNR. The difference was shown to be mainly due to the different property of Fd between the two types. Kinetic analyses using site-directed mutants of Fd showed the contribution of C-terminal residues, together with that of 78th residue of Fd, on the differential profile of Fd/FNR reaction by pH and NADPH.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvaf031\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf031","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在高等植物中,铁氧还蛋白(Fd)和Fd- nadp +还原酶(FNR)分别作为光合型和非光合型的不同同工蛋白存在,尽管它们在三维结构上相似,但它们表现出不同的功能。在本研究中,我们从两个角度讨论了Fd/FNR反应在两种类型之间的差异调控,并研究了Fd中氨基酸残基的差异。首先,Fd/FNR电子转移活性随ph值的变化在Fd和FNR两种类型的组合中有所不同;非光合型FNR在两种Fds中表现出相似的模式,而光合型FNR在两种Fds中表现出相反的模式,这可以用两种Fds不同的ph依赖性Km曲线来解释。其次,在两种Fd:FNR组合中,NADPH对Fd与FNR亲和力(以Km值计算)的抑制程度有显著差异。结果表明,这种差异主要是由于两种类型之间Fd的性质不同。利用Fd位点定向突变体进行的动力学分析表明,c端残基以及Fd的第78个残基对pH和NADPH对Fd/FNR反应的差异谱的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential regulation between photosynthetic type and non-photosynthetic type Fd:FNRs in the negative cooperativity and pH dependency of the electron transfer activity.

In higher plants, ferredoxin (Fd) and Fd-NADP+ reductase (FNR) are each present as distinct isoproteins of photosynthetic type and non-photosynthetic type, which exhibit differential function despite their similarity in the 3D structures. In this study, we addressed differential regulation of Fd/FNR reaction between the two types from two perspectives and investigated the amino acid residues of Fd responsible for the differences. Firstly, pH-dependent profile of Fd/FNR electron transfer activity varied among the combinations of the two types of Fd and FNR; non-photosynthetic type FNR showed similar pattern for the two types of Fds while photosynthetic type FNR was previously shown to exhibit opposite pattern which was explained by the different pH-dependent profile of Km for the two Fds. Secondly, the extent of the suppression of the affinity (in terms of Km value) between Fd and FNR by NADPH significantly varied among the combinations of the two types of Fd:FNR. The difference was shown to be mainly due to the different property of Fd between the two types. Kinetic analyses using site-directed mutants of Fd showed the contribution of C-terminal residues, together with that of 78th residue of Fd, on the differential profile of Fd/FNR reaction by pH and NADPH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信