Matthew W Stinson, Summer G Paulson, Ethan M Carlile, Jeremy D Rotty
{"title":"在细胞外基质存在的情况下,巨噬细胞进入二维禁闭后持续定向迁移。","authors":"Matthew W Stinson, Summer G Paulson, Ethan M Carlile, Jeremy D Rotty","doi":"10.1242/bio.061782","DOIUrl":null,"url":null,"abstract":"<p><p>Cells sense and respond to their environment in a myriad of ways. In many instances, they must integrate simultaneous cues ranging from the physical properties and composition of the extracellular matrix to guidance cues that stimulate chemotaxis or haptotaxis. How cells make sense of multiple simultaneous cues is an ongoing physiologically relevant area of research. The present study seeks to contribute to the understanding of multi-cue sensing by understanding how the transition to a confined setting with or without an added haptotactic gradient alters macrophage migration. We found that the transition to confinement is itself a directional cue capable of driving persistent migration hours after macrophages enter the confined environment. Next, we found that a haptotactic fibronectin gradient made cells even more directionally persistent under confinement. Finally, Arp2/3 complex deletion rendered macrophages unresponsive to the haptotactic gradient, but they retained directionally persistent migration due to their transition to confinement. These findings may be particularly relevant for cells that move from an adherent 2D environment into a confining 3D environment, like leukocytes and circulating tumor cells that extravasate into peripheral tissue.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264731/pdf/","citationCount":"0","resultStr":"{\"title\":\"Macrophages migrate persistently and directionally upon entering 2D confinement in the presence of extracellular matrix.\",\"authors\":\"Matthew W Stinson, Summer G Paulson, Ethan M Carlile, Jeremy D Rotty\",\"doi\":\"10.1242/bio.061782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells sense and respond to their environment in a myriad of ways. In many instances, they must integrate simultaneous cues ranging from the physical properties and composition of the extracellular matrix to guidance cues that stimulate chemotaxis or haptotaxis. How cells make sense of multiple simultaneous cues is an ongoing physiologically relevant area of research. The present study seeks to contribute to the understanding of multi-cue sensing by understanding how the transition to a confined setting with or without an added haptotactic gradient alters macrophage migration. We found that the transition to confinement is itself a directional cue capable of driving persistent migration hours after macrophages enter the confined environment. Next, we found that a haptotactic fibronectin gradient made cells even more directionally persistent under confinement. Finally, Arp2/3 complex deletion rendered macrophages unresponsive to the haptotactic gradient, but they retained directionally persistent migration due to their transition to confinement. These findings may be particularly relevant for cells that move from an adherent 2D environment into a confining 3D environment, like leukocytes and circulating tumor cells that extravasate into peripheral tissue.</p>\",\"PeriodicalId\":9216,\"journal\":{\"name\":\"Biology Open\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Open\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/bio.061782\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.061782","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Macrophages migrate persistently and directionally upon entering 2D confinement in the presence of extracellular matrix.
Cells sense and respond to their environment in a myriad of ways. In many instances, they must integrate simultaneous cues ranging from the physical properties and composition of the extracellular matrix to guidance cues that stimulate chemotaxis or haptotaxis. How cells make sense of multiple simultaneous cues is an ongoing physiologically relevant area of research. The present study seeks to contribute to the understanding of multi-cue sensing by understanding how the transition to a confined setting with or without an added haptotactic gradient alters macrophage migration. We found that the transition to confinement is itself a directional cue capable of driving persistent migration hours after macrophages enter the confined environment. Next, we found that a haptotactic fibronectin gradient made cells even more directionally persistent under confinement. Finally, Arp2/3 complex deletion rendered macrophages unresponsive to the haptotactic gradient, but they retained directionally persistent migration due to their transition to confinement. These findings may be particularly relevant for cells that move from an adherent 2D environment into a confining 3D environment, like leukocytes and circulating tumor cells that extravasate into peripheral tissue.
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.