{"title":"基于20-脱氧胆醇酯的PKC激动剂的设计及其溶酶体生物活性增强。","authors":"Jia-Jia Wan, Qiu-Yuan Yin, Mao Sun, Cui-Shan Zhang, Hao-Jing Zang, Pei-Tong Yao, Ming-Rui Yuan, Ding-Kang Chen, Feng Guo, Qun Chen, Bo-Wen Ouyang, Zi-Fei Xu, Ming-Ming Cao, Chong-Lin Yang, Xiao-Jiang Hao, Ying-Tong Di","doi":"10.1007/s13659-025-00522-x","DOIUrl":null,"url":null,"abstract":"<p><p>The activation of conventional (α) and novel (δ) protein kinase C (PKC) isoforms promotes lysosomal biogenesis, a critical process for clearance of pathogenic protein aggregates including β-amyloid (Aβ) and phosphorylated Tau (p-Tau) in neurodegenerative disorders. Notably, PKC activators HEP14/15, characterized by 20-methyl moiety, fail to establish classical C1B domain pharmacophore interactions, suggesting a non-canonical activation mechanism. In this study, structural diversification of 20-deoxyingenol through esterification and acetonide protection yielded 18 new derivatives (2-19). Systematic screening revealed their lysosome-promoting activities, with structure-activity relationship analysis identifying compounds 4 and 18 as superior autophagy inducers. At 20 μM, these derivatives enhanced autophagic flux by 2.45-fold and 2.31-fold versus vehicle control. Moreover, compounds 4 and 18 exhibited a dose-dependent increase in lysosome numbers, promoted TFEB nuclear translocation, and enhanced lysosome-mediated lipid droplet clearance. Western blot analysis further revealed that compounds 4/18 upregulated proteins associated with the autophagy-lysosome system, suggesting their potential as promising autophagy inducers. Mechanistically, molecular docking simulations indicated thier high-affinity binding to PKCδ, which may explain their autophagy-enhancing properties.</p>","PeriodicalId":718,"journal":{"name":"Natural Products and Bioprospecting","volume":"15 1","pages":"38"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151967/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design of 20-deoxyingenol-esters-based PKC agonists and their lysosome biogenesis-enhancing activity.\",\"authors\":\"Jia-Jia Wan, Qiu-Yuan Yin, Mao Sun, Cui-Shan Zhang, Hao-Jing Zang, Pei-Tong Yao, Ming-Rui Yuan, Ding-Kang Chen, Feng Guo, Qun Chen, Bo-Wen Ouyang, Zi-Fei Xu, Ming-Ming Cao, Chong-Lin Yang, Xiao-Jiang Hao, Ying-Tong Di\",\"doi\":\"10.1007/s13659-025-00522-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The activation of conventional (α) and novel (δ) protein kinase C (PKC) isoforms promotes lysosomal biogenesis, a critical process for clearance of pathogenic protein aggregates including β-amyloid (Aβ) and phosphorylated Tau (p-Tau) in neurodegenerative disorders. Notably, PKC activators HEP14/15, characterized by 20-methyl moiety, fail to establish classical C1B domain pharmacophore interactions, suggesting a non-canonical activation mechanism. In this study, structural diversification of 20-deoxyingenol through esterification and acetonide protection yielded 18 new derivatives (2-19). Systematic screening revealed their lysosome-promoting activities, with structure-activity relationship analysis identifying compounds 4 and 18 as superior autophagy inducers. At 20 μM, these derivatives enhanced autophagic flux by 2.45-fold and 2.31-fold versus vehicle control. Moreover, compounds 4 and 18 exhibited a dose-dependent increase in lysosome numbers, promoted TFEB nuclear translocation, and enhanced lysosome-mediated lipid droplet clearance. Western blot analysis further revealed that compounds 4/18 upregulated proteins associated with the autophagy-lysosome system, suggesting their potential as promising autophagy inducers. Mechanistically, molecular docking simulations indicated thier high-affinity binding to PKCδ, which may explain their autophagy-enhancing properties.</p>\",\"PeriodicalId\":718,\"journal\":{\"name\":\"Natural Products and Bioprospecting\",\"volume\":\"15 1\",\"pages\":\"38\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151967/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Products and Bioprospecting\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s13659-025-00522-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Products and Bioprospecting","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s13659-025-00522-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design of 20-deoxyingenol-esters-based PKC agonists and their lysosome biogenesis-enhancing activity.
The activation of conventional (α) and novel (δ) protein kinase C (PKC) isoforms promotes lysosomal biogenesis, a critical process for clearance of pathogenic protein aggregates including β-amyloid (Aβ) and phosphorylated Tau (p-Tau) in neurodegenerative disorders. Notably, PKC activators HEP14/15, characterized by 20-methyl moiety, fail to establish classical C1B domain pharmacophore interactions, suggesting a non-canonical activation mechanism. In this study, structural diversification of 20-deoxyingenol through esterification and acetonide protection yielded 18 new derivatives (2-19). Systematic screening revealed their lysosome-promoting activities, with structure-activity relationship analysis identifying compounds 4 and 18 as superior autophagy inducers. At 20 μM, these derivatives enhanced autophagic flux by 2.45-fold and 2.31-fold versus vehicle control. Moreover, compounds 4 and 18 exhibited a dose-dependent increase in lysosome numbers, promoted TFEB nuclear translocation, and enhanced lysosome-mediated lipid droplet clearance. Western blot analysis further revealed that compounds 4/18 upregulated proteins associated with the autophagy-lysosome system, suggesting their potential as promising autophagy inducers. Mechanistically, molecular docking simulations indicated thier high-affinity binding to PKCδ, which may explain their autophagy-enhancing properties.
期刊介绍:
Natural Products and Bioprospecting serves as an international forum for essential research on natural products and focuses on, but is not limited to, the following aspects:
Natural products: isolation and structure elucidation
Natural products: synthesis
Biological evaluation of biologically active natural products
Bioorganic and medicinal chemistry
Biosynthesis and microbiological transformation
Fermentation and plant tissue cultures
Bioprospecting of natural products from natural resources
All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Natural Products and Bioprospecting publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of natural products. It is also an open access journal, which provides free access to its articles to anyone, anywhere.