Gabe Ribicoff, Mira Garner, Kasey Pham, Kieran N Althaus, Jeannine Cavender-Bares, Andrew A Crowl, Samantha Gray, Paul Gugger, Marlene Hahn, Shuai Liao, Paul S Manos, Rebekah A Mohn, Ian S Pearse, Nicholas R Steichmann, Ashley L Tuffin, Alan T Whittemore, Andrew L Hipp
{"title":"北美东部白栎树群落的遗传渗入、系统地理学和基因组物种内聚。","authors":"Gabe Ribicoff, Mira Garner, Kasey Pham, Kieran N Althaus, Jeannine Cavender-Bares, Andrew A Crowl, Samantha Gray, Paul Gugger, Marlene Hahn, Shuai Liao, Paul S Manos, Rebekah A Mohn, Ian S Pearse, Nicholas R Steichmann, Ashley L Tuffin, Alan T Whittemore, Andrew L Hipp","doi":"10.1111/mec.17822","DOIUrl":null,"url":null,"abstract":"<p><p>Hybridization and interspecific gene flow play a substantial role in the evolution of plant taxa. The eastern North American white oak syngameon, a group of approximately 15 ecologically, morphologically and genomically distinguishable species, has long been recognised as a model system for studying introgressive hybridization in temperate trees. However, the prevalence, genomic context and environmental correlates of introgression in this system remain largely unknown. To assess introgression in the eastern North American white oak syngameon and population structure within the widespread Quercus macrocarpa, we conducted a rangewide survey of Q. macrocarpa and four sympatric eastern North American white oak species. Using a Hyb-Seq approach, we assembled a dataset of 3412 thinned single-nucleotide polymorphisms (SNPs) in 445 enriched target loci including 62 genes putatively associated with various ecological functions, as well as associated intronic regions and some off-target intergenic regions (not associated with the exons). Admixture analysis and hybrid class inference demonstrated species coherence despite hybridization and introgressive gene flow (due to backcrossing of F1s to one or both parents). Additionally, we recovered a genetic structure within Q. macrocarpa associated with latitude. Generalised linear mixed models (GLMMs) indicate that proximity to range edge predicts interspecific admixture, but rates of genetic differentiation do not appear to vary between putative functional gene classes. Our study suggests that gene flow between eastern North American white oak species may not be as rampant as previously assumed and that hybridization is most strongly predicted by proximity to a species' range margin.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17822"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introgression, Phylogeography, and Genomic Species Cohesion in the Eastern North American White Oak Syngameon.\",\"authors\":\"Gabe Ribicoff, Mira Garner, Kasey Pham, Kieran N Althaus, Jeannine Cavender-Bares, Andrew A Crowl, Samantha Gray, Paul Gugger, Marlene Hahn, Shuai Liao, Paul S Manos, Rebekah A Mohn, Ian S Pearse, Nicholas R Steichmann, Ashley L Tuffin, Alan T Whittemore, Andrew L Hipp\",\"doi\":\"10.1111/mec.17822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hybridization and interspecific gene flow play a substantial role in the evolution of plant taxa. The eastern North American white oak syngameon, a group of approximately 15 ecologically, morphologically and genomically distinguishable species, has long been recognised as a model system for studying introgressive hybridization in temperate trees. However, the prevalence, genomic context and environmental correlates of introgression in this system remain largely unknown. To assess introgression in the eastern North American white oak syngameon and population structure within the widespread Quercus macrocarpa, we conducted a rangewide survey of Q. macrocarpa and four sympatric eastern North American white oak species. Using a Hyb-Seq approach, we assembled a dataset of 3412 thinned single-nucleotide polymorphisms (SNPs) in 445 enriched target loci including 62 genes putatively associated with various ecological functions, as well as associated intronic regions and some off-target intergenic regions (not associated with the exons). Admixture analysis and hybrid class inference demonstrated species coherence despite hybridization and introgressive gene flow (due to backcrossing of F1s to one or both parents). Additionally, we recovered a genetic structure within Q. macrocarpa associated with latitude. Generalised linear mixed models (GLMMs) indicate that proximity to range edge predicts interspecific admixture, but rates of genetic differentiation do not appear to vary between putative functional gene classes. Our study suggests that gene flow between eastern North American white oak species may not be as rampant as previously assumed and that hybridization is most strongly predicted by proximity to a species' range margin.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17822\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17822\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17822","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Introgression, Phylogeography, and Genomic Species Cohesion in the Eastern North American White Oak Syngameon.
Hybridization and interspecific gene flow play a substantial role in the evolution of plant taxa. The eastern North American white oak syngameon, a group of approximately 15 ecologically, morphologically and genomically distinguishable species, has long been recognised as a model system for studying introgressive hybridization in temperate trees. However, the prevalence, genomic context and environmental correlates of introgression in this system remain largely unknown. To assess introgression in the eastern North American white oak syngameon and population structure within the widespread Quercus macrocarpa, we conducted a rangewide survey of Q. macrocarpa and four sympatric eastern North American white oak species. Using a Hyb-Seq approach, we assembled a dataset of 3412 thinned single-nucleotide polymorphisms (SNPs) in 445 enriched target loci including 62 genes putatively associated with various ecological functions, as well as associated intronic regions and some off-target intergenic regions (not associated with the exons). Admixture analysis and hybrid class inference demonstrated species coherence despite hybridization and introgressive gene flow (due to backcrossing of F1s to one or both parents). Additionally, we recovered a genetic structure within Q. macrocarpa associated with latitude. Generalised linear mixed models (GLMMs) indicate that proximity to range edge predicts interspecific admixture, but rates of genetic differentiation do not appear to vary between putative functional gene classes. Our study suggests that gene flow between eastern North American white oak species may not be as rampant as previously assumed and that hybridization is most strongly predicted by proximity to a species' range margin.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms