生物电子学中的纹身电极:通往下一代可穿戴系统的途径。

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jinwoo Lee, Seung Hwan Ko
{"title":"生物电子学中的纹身电极:通往下一代可穿戴系统的途径。","authors":"Jinwoo Lee, Seung Hwan Ko","doi":"10.1039/d5nh00175g","DOIUrl":null,"url":null,"abstract":"<p><p>Tattoo-based electronics have emerged as a transformative platform for next-generation wearable bioelectronics. Unlike conventional wearable devices, which rely on substrates, tattoo electrodes are directly formed or transferred onto the skin or internal organs, ensuring superior comfort, breathability, and long-term usability. This intimate interface minimizes motion-induced artifacts and enables reliable biosignal acquisition across diverse physiological and anatomical regions. However, the absence of a supporting substrate imposes unique challenges in fabrication and material design. The fabrication processes must be tailored to accommodate direct skin application, and the selection of functional materials is more constrained. Materials must not only be biocompatible and flexible but also capable of maintaining performance under the dynamic conditions of the human body. This review presents a comprehensive overview of tattoo electrode technology, beginning with fabrication strategies, including direct and indirect patterning methods. We then discuss a range of materials, such as metallic networks, carbon-based materials, polymers, and materials recently being studied. Finally, we explore the diverse applications of tattoo electrodes in strain and electrophysiological sensing, temperature and humidity detection, biochemical monitoring, and energy harvesting and storage. Through this review, we aim to highlight the potential and future directions of tattoo-based electronic systems.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tattoo electrodes in bioelectronics: a pathway to next-generation wearable systems.\",\"authors\":\"Jinwoo Lee, Seung Hwan Ko\",\"doi\":\"10.1039/d5nh00175g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tattoo-based electronics have emerged as a transformative platform for next-generation wearable bioelectronics. Unlike conventional wearable devices, which rely on substrates, tattoo electrodes are directly formed or transferred onto the skin or internal organs, ensuring superior comfort, breathability, and long-term usability. This intimate interface minimizes motion-induced artifacts and enables reliable biosignal acquisition across diverse physiological and anatomical regions. However, the absence of a supporting substrate imposes unique challenges in fabrication and material design. The fabrication processes must be tailored to accommodate direct skin application, and the selection of functional materials is more constrained. Materials must not only be biocompatible and flexible but also capable of maintaining performance under the dynamic conditions of the human body. This review presents a comprehensive overview of tattoo electrode technology, beginning with fabrication strategies, including direct and indirect patterning methods. We then discuss a range of materials, such as metallic networks, carbon-based materials, polymers, and materials recently being studied. Finally, we explore the diverse applications of tattoo electrodes in strain and electrophysiological sensing, temperature and humidity detection, biochemical monitoring, and energy harvesting and storage. Through this review, we aim to highlight the potential and future directions of tattoo-based electronic systems.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00175g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00175g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于纹身的电子产品已经成为下一代可穿戴生物电子产品的变革性平台。与依赖基板的传统可穿戴设备不同,纹身电极直接形成或转移到皮肤或内部器官上,确保了卓越的舒适性、透气性和长期可用性。这种亲密的界面最大限度地减少了运动引起的伪影,并在不同的生理和解剖区域实现了可靠的生物信号采集。然而,在制造和材料设计方面,缺乏支撑基板带来了独特的挑战。制造工艺必须量身定制,以适应直接的皮肤应用,功能材料的选择受到更多限制。材料不仅要具有生物相容性和柔韧性,而且要能够在人体的动态条件下保持性能。本文综述了纹身电极技术的全面概述,从制造策略开始,包括直接和间接的图案方法。然后我们讨论了一系列材料,如金属网络、碳基材料、聚合物和最近正在研究的材料。最后,我们探讨了纹身电极在应变和电生理传感、温度和湿度检测、生化监测以及能量收集和储存方面的各种应用。通过这篇综述,我们旨在强调基于纹身的电子系统的潜力和未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tattoo electrodes in bioelectronics: a pathway to next-generation wearable systems.

Tattoo-based electronics have emerged as a transformative platform for next-generation wearable bioelectronics. Unlike conventional wearable devices, which rely on substrates, tattoo electrodes are directly formed or transferred onto the skin or internal organs, ensuring superior comfort, breathability, and long-term usability. This intimate interface minimizes motion-induced artifacts and enables reliable biosignal acquisition across diverse physiological and anatomical regions. However, the absence of a supporting substrate imposes unique challenges in fabrication and material design. The fabrication processes must be tailored to accommodate direct skin application, and the selection of functional materials is more constrained. Materials must not only be biocompatible and flexible but also capable of maintaining performance under the dynamic conditions of the human body. This review presents a comprehensive overview of tattoo electrode technology, beginning with fabrication strategies, including direct and indirect patterning methods. We then discuss a range of materials, such as metallic networks, carbon-based materials, polymers, and materials recently being studied. Finally, we explore the diverse applications of tattoo electrodes in strain and electrophysiological sensing, temperature and humidity detection, biochemical monitoring, and energy harvesting and storage. Through this review, we aim to highlight the potential and future directions of tattoo-based electronic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信