Kagome反铁磁体中各向异性应变印迹电可切换标量自旋手性。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Advanced Science Pub Date : 2025-08-01 Epub Date: 2025-06-10 DOI:10.1002/advs.202502569
Debjoty Paul, Shivesh Yadav, Shikhar Gupta, Bikash Patra, Nilesh Kulkarni, Debashis Mondal, Kaushal Gavankar, Sourav K Sahu, Biswarup Satpati, Bahadur Singh, Owen Benton, Shouvik Chatterjee
{"title":"Kagome反铁磁体中各向异性应变印迹电可切换标量自旋手性。","authors":"Debjoty Paul, Shivesh Yadav, Shikhar Gupta, Bikash Patra, Nilesh Kulkarni, Debashis Mondal, Kaushal Gavankar, Sourav K Sahu, Biswarup Satpati, Bahadur Singh, Owen Benton, Shouvik Chatterjee","doi":"10.1002/advs.202502569","DOIUrl":null,"url":null,"abstract":"<p><p>Topological chiral antiferromagnets, such as Mn<sub>3</sub>Sn, are emerging as promising materials for next-generation spintronic devices due to their intrinsic transport properties linked to exotic magnetic configurations. Here, it is demonstrated that anisotropic strain in Mn<sub>3</sub>Sn thin films offers a novel approach to manipulate the magnetic ground state, unlocking new functionalities in this material. Anisotropic strain reduces the point group symmetry of the manganese (Mn) Kagome triangles from C<sub>3v</sub> to C<sub>1</sub>, significantly altering the energy landscape of the magnetic states in Mn<sub>3</sub>Sn. This symmetry reduction enables even a tiny in-plane Dzyaloshinskii-Moriya (DM) interaction to induce canting of the Mn spins out of the Kagome plane. The modified magnetic ground state introduces a finite scalar spin chirality and results in a significant Berry phase in momentum space. Consequently, a large anomalous Hall effect emerges in the Kagome plane at room temperature - an effect that is absent in the bulk material. Moreover, this twofold degenerate magnetic state enables the creation of multiple-stable, non-volatile anomalous Hall resistance (AHR) memory states. These states are field-stable and can be controlled by thermal-assisted current-induced magnetization switching, requiring modest current densities and small bias fields, thereby offering a compelling new functionality in Mn<sub>3</sub>Sn for spintronic applications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e02569"},"PeriodicalIF":14.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362762/pdf/","citationCount":"0","resultStr":"{\"title\":\"Imprinting Electrically Switchable Scalar Spin Chirality by Anisotropic Strain in a Kagome Antiferromagnet.\",\"authors\":\"Debjoty Paul, Shivesh Yadav, Shikhar Gupta, Bikash Patra, Nilesh Kulkarni, Debashis Mondal, Kaushal Gavankar, Sourav K Sahu, Biswarup Satpati, Bahadur Singh, Owen Benton, Shouvik Chatterjee\",\"doi\":\"10.1002/advs.202502569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Topological chiral antiferromagnets, such as Mn<sub>3</sub>Sn, are emerging as promising materials for next-generation spintronic devices due to their intrinsic transport properties linked to exotic magnetic configurations. Here, it is demonstrated that anisotropic strain in Mn<sub>3</sub>Sn thin films offers a novel approach to manipulate the magnetic ground state, unlocking new functionalities in this material. Anisotropic strain reduces the point group symmetry of the manganese (Mn) Kagome triangles from C<sub>3v</sub> to C<sub>1</sub>, significantly altering the energy landscape of the magnetic states in Mn<sub>3</sub>Sn. This symmetry reduction enables even a tiny in-plane Dzyaloshinskii-Moriya (DM) interaction to induce canting of the Mn spins out of the Kagome plane. The modified magnetic ground state introduces a finite scalar spin chirality and results in a significant Berry phase in momentum space. Consequently, a large anomalous Hall effect emerges in the Kagome plane at room temperature - an effect that is absent in the bulk material. Moreover, this twofold degenerate magnetic state enables the creation of multiple-stable, non-volatile anomalous Hall resistance (AHR) memory states. These states are field-stable and can be controlled by thermal-assisted current-induced magnetization switching, requiring modest current densities and small bias fields, thereby offering a compelling new functionality in Mn<sub>3</sub>Sn for spintronic applications.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e02569\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362762/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202502569\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202502569","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

拓扑手性反铁磁体,如Mn3Sn,由于其与外来磁构型相关的固有输运性质,正成为下一代自旋电子器件的有前途的材料。在这里,证明了Mn3Sn薄膜中的各向异性应变提供了一种新的方法来操纵磁基态,解锁该材料的新功能。各向异性应变降低了锰(Mn) Kagome三角形从C3v到C1的点群对称性,显著改变了Mn3Sn中磁态的能量格局。这种对称性降低使得即使是一个微小的平面内Dzyaloshinskii-Moriya (DM)相互作用也能诱导Mn自旋从Kagome平面中倾斜出来。修正后的磁基态引入了有限标量自旋手性,并在动量空间中产生了显著的Berry相。因此,在室温下,Kagome平面出现了一个巨大的反常霍尔效应,而这种效应在块状材料中是不存在的。此外,这种双重简并磁态可以创建多稳定,非易失性异常霍尔电阻(AHR)记忆态。这些状态是场稳定的,可以通过热辅助电流感应磁化开关来控制,需要适度的电流密度和小的偏压场,从而为自旋电子应用提供了引人注目的Mn3Sn新功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imprinting Electrically Switchable Scalar Spin Chirality by Anisotropic Strain in a Kagome Antiferromagnet.

Topological chiral antiferromagnets, such as Mn3Sn, are emerging as promising materials for next-generation spintronic devices due to their intrinsic transport properties linked to exotic magnetic configurations. Here, it is demonstrated that anisotropic strain in Mn3Sn thin films offers a novel approach to manipulate the magnetic ground state, unlocking new functionalities in this material. Anisotropic strain reduces the point group symmetry of the manganese (Mn) Kagome triangles from C3v to C1, significantly altering the energy landscape of the magnetic states in Mn3Sn. This symmetry reduction enables even a tiny in-plane Dzyaloshinskii-Moriya (DM) interaction to induce canting of the Mn spins out of the Kagome plane. The modified magnetic ground state introduces a finite scalar spin chirality and results in a significant Berry phase in momentum space. Consequently, a large anomalous Hall effect emerges in the Kagome plane at room temperature - an effect that is absent in the bulk material. Moreover, this twofold degenerate magnetic state enables the creation of multiple-stable, non-volatile anomalous Hall resistance (AHR) memory states. These states are field-stable and can be controlled by thermal-assisted current-induced magnetization switching, requiring modest current densities and small bias fields, thereby offering a compelling new functionality in Mn3Sn for spintronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信