通过表面活性剂和量子点对醌酸锌络合物-染料相互作用的协同影响提高FRET效率。

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Sumit Singha, Manideepa Paul, Prokash Ghosh, Mihir Manna, Sabyasachi Pramanik, Anirban Misra, Satyapriya Bhandari
{"title":"通过表面活性剂和量子点对醌酸锌络合物-染料相互作用的协同影响提高FRET效率。","authors":"Sumit Singha, Manideepa Paul, Prokash Ghosh, Mihir Manna, Sabyasachi Pramanik, Anirban Misra, Satyapriya Bhandari","doi":"10.1021/acs.jpclett.5c01269","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we present a pioneering approach to enhancing Förster resonance energy transfer (FRET) efficiency through the synergistic integration of cetyltrimethylammonium bromide (CTAB) surfactants and ZnS quantum dots (QDs) within a zinc quinolate complex (ZQC)-dye (Rhodamine B: RhB) system. FRET efficiency is elevated from 13.1% to 49% with surfactants alone and further to an impressive 93.6% with the addition of QDs. This advancement highlights the vital role of chemical environment modifications in regulating energy transfer mechanisms. Employing nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy alongside density functional theory (DFT) calculations, the study provides comprehensive insights into molecular interactions, electronic behavior, and structural transformations driving enhanced energy transfer. The findings set a benchmark for high-performance FRET systems, offering a robust platform for applications in bioimaging, biosensors, optoelectronics, and nanophotonics. By blending experimental innovation with theoretical validation, this work paves the way for transformative advancements in optical- and nanomaterial-based technologies.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"6066-6072"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing FRET Efficiency through Synergistic Influences of Surfactants and Quantum Dots on Zinc Quinolate Complex-Dye Interactions.\",\"authors\":\"Sumit Singha, Manideepa Paul, Prokash Ghosh, Mihir Manna, Sabyasachi Pramanik, Anirban Misra, Satyapriya Bhandari\",\"doi\":\"10.1021/acs.jpclett.5c01269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein, we present a pioneering approach to enhancing Förster resonance energy transfer (FRET) efficiency through the synergistic integration of cetyltrimethylammonium bromide (CTAB) surfactants and ZnS quantum dots (QDs) within a zinc quinolate complex (ZQC)-dye (Rhodamine B: RhB) system. FRET efficiency is elevated from 13.1% to 49% with surfactants alone and further to an impressive 93.6% with the addition of QDs. This advancement highlights the vital role of chemical environment modifications in regulating energy transfer mechanisms. Employing nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy alongside density functional theory (DFT) calculations, the study provides comprehensive insights into molecular interactions, electronic behavior, and structural transformations driving enhanced energy transfer. The findings set a benchmark for high-performance FRET systems, offering a robust platform for applications in bioimaging, biosensors, optoelectronics, and nanophotonics. By blending experimental innovation with theoretical validation, this work paves the way for transformative advancements in optical- and nanomaterial-based technologies.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\" \",\"pages\":\"6066-6072\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.5c01269\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c01269","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们提出了一种开创性的方法,通过在锌醌酸配合物(ZQC)-染料(罗丹明B: RhB)体系中协同整合十六烷基三甲基溴化铵(CTAB)表面活性剂和ZnS量子点(QDs)来提高Förster共振能量转移(FRET)效率。仅使用表面活性剂时,FRET效率从13.1%提高到49%,添加量子点后,FRET效率进一步提高到令人印象深刻的93.6%。这一进展突出了化学环境变化在调节能量传递机制中的重要作用。利用核磁共振(NMR)和傅里叶变换红外(FTIR)光谱以及密度泛函理论(DFT)计算,该研究提供了对分子相互作用、电子行为和驱动增强能量传递的结构转换的全面见解。该研究结果为高性能FRET系统设定了基准,为生物成像、生物传感器、光电子和纳米光子学的应用提供了一个强大的平台。通过将实验创新与理论验证相结合,这项工作为光学和纳米材料技术的变革性进步铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing FRET Efficiency through Synergistic Influences of Surfactants and Quantum Dots on Zinc Quinolate Complex-Dye Interactions.

Enhancing FRET Efficiency through Synergistic Influences of Surfactants and Quantum Dots on Zinc Quinolate Complex-Dye Interactions.

Herein, we present a pioneering approach to enhancing Förster resonance energy transfer (FRET) efficiency through the synergistic integration of cetyltrimethylammonium bromide (CTAB) surfactants and ZnS quantum dots (QDs) within a zinc quinolate complex (ZQC)-dye (Rhodamine B: RhB) system. FRET efficiency is elevated from 13.1% to 49% with surfactants alone and further to an impressive 93.6% with the addition of QDs. This advancement highlights the vital role of chemical environment modifications in regulating energy transfer mechanisms. Employing nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy alongside density functional theory (DFT) calculations, the study provides comprehensive insights into molecular interactions, electronic behavior, and structural transformations driving enhanced energy transfer. The findings set a benchmark for high-performance FRET systems, offering a robust platform for applications in bioimaging, biosensors, optoelectronics, and nanophotonics. By blending experimental innovation with theoretical validation, this work paves the way for transformative advancements in optical- and nanomaterial-based technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信