促进析氢的Core@Shell RuFe@Ru亚稳相工程。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2025-06-18 Epub Date: 2025-06-10 DOI:10.1021/acs.nanolett.5c02375
Jiashuo Gu, Ligang Chen, Juntao Zhang, Chaowei Zhang, Jiaqing Li, Sudi Chen, Xiaozhi Liu, Shuangxi Chen, Haofei Geng, Zhiwei Hu, Feng Bai
{"title":"促进析氢的Core@Shell RuFe@Ru亚稳相工程。","authors":"Jiashuo Gu, Ligang Chen, Juntao Zhang, Chaowei Zhang, Jiaqing Li, Sudi Chen, Xiaozhi Liu, Shuangxi Chen, Haofei Geng, Zhiwei Hu, Feng Bai","doi":"10.1021/acs.nanolett.5c02375","DOIUrl":null,"url":null,"abstract":"<p><p>Phase engineering and the construction of core-shell structures of noble nanomaterials are powerful strategies for regulating their functional properties. In this work, we operated phase engineering on a catalyst with a core@shell structure, where the core is a metastable face-centered-cubic (fcc) RuFe alloy and the shell is metastable Ru (fcc RuFe@fcc Ru). Corresponding characterizations and electrochemical analyses reveal that the catalytic performance is highly dependent on both the core@shell structure and the crystal phase. fcc RuFe@fcc Ru delivers a superior hydrogen evolution reaction (HER) performance compared to the hexagonal-close-packed (hcp) phase with a core@shell RuFe@Ru structure (hcp RuFe@hcp Ru) and hcp RuFe alloy (hcp RuFe). Density functional theory calculations reveal that both the core@shell structure and the metastable fcc phase effectively modulate the adsorption strength of intermediate species, leading to a reduction in the reaction free energy of the thermodynamically most unfavorable reaction step, thereby enhancing the HER performance.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"9872-9879"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metastable Phase Engineering of Core@Shell RuFe@Ru for Boosting Hydrogen Evolution.\",\"authors\":\"Jiashuo Gu, Ligang Chen, Juntao Zhang, Chaowei Zhang, Jiaqing Li, Sudi Chen, Xiaozhi Liu, Shuangxi Chen, Haofei Geng, Zhiwei Hu, Feng Bai\",\"doi\":\"10.1021/acs.nanolett.5c02375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phase engineering and the construction of core-shell structures of noble nanomaterials are powerful strategies for regulating their functional properties. In this work, we operated phase engineering on a catalyst with a core@shell structure, where the core is a metastable face-centered-cubic (fcc) RuFe alloy and the shell is metastable Ru (fcc RuFe@fcc Ru). Corresponding characterizations and electrochemical analyses reveal that the catalytic performance is highly dependent on both the core@shell structure and the crystal phase. fcc RuFe@fcc Ru delivers a superior hydrogen evolution reaction (HER) performance compared to the hexagonal-close-packed (hcp) phase with a core@shell RuFe@Ru structure (hcp RuFe@hcp Ru) and hcp RuFe alloy (hcp RuFe). Density functional theory calculations reveal that both the core@shell structure and the metastable fcc phase effectively modulate the adsorption strength of intermediate species, leading to a reduction in the reaction free energy of the thermodynamically most unfavorable reaction step, thereby enhancing the HER performance.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"9872-9879\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c02375\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c02375","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

贵金属纳米材料的相工程和核壳结构的构建是调控其功能特性的有力策略。在这项工作中,我们对具有core@shell结构的催化剂进行了相工程,其中核心是亚稳面心立方(fcc) RuFe合金,壳是亚稳Ru (fcc RuFe@fcc Ru)。相应的表征和电化学分析表明,催化性能高度依赖于core@shell结构和晶相。fcc RuFe@fcc Ru与具有core@shell RuFe@Ru结构的六边形密排(hcp)相(hcp RuFe@hcp Ru)和hcp RuFe合金(hcp RuFe)相比,具有更好的析氢反应(HER)性能。密度功能理论计算表明,core@shell结构和介稳fcc相有效地调节了中间物质的吸附强度,导致热力学最不利反应步骤的反应自由能降低,从而提高了HER性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metastable Phase Engineering of Core@Shell RuFe@Ru for Boosting Hydrogen Evolution.

Phase engineering and the construction of core-shell structures of noble nanomaterials are powerful strategies for regulating their functional properties. In this work, we operated phase engineering on a catalyst with a core@shell structure, where the core is a metastable face-centered-cubic (fcc) RuFe alloy and the shell is metastable Ru (fcc RuFe@fcc Ru). Corresponding characterizations and electrochemical analyses reveal that the catalytic performance is highly dependent on both the core@shell structure and the crystal phase. fcc RuFe@fcc Ru delivers a superior hydrogen evolution reaction (HER) performance compared to the hexagonal-close-packed (hcp) phase with a core@shell RuFe@Ru structure (hcp RuFe@hcp Ru) and hcp RuFe alloy (hcp RuFe). Density functional theory calculations reveal that both the core@shell structure and the metastable fcc phase effectively modulate the adsorption strength of intermediate species, leading to a reduction in the reaction free energy of the thermodynamically most unfavorable reaction step, thereby enhancing the HER performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信