{"title":"利用马尔可夫模型和构象种群的贝叶斯推断对核磁共振测量进行非自然和循环肽折叠景观的高分辨率调谐。","authors":"Thi Dung Nguyen, Robert M Raddi, Vincent A Voelz","doi":"10.1021/acs.jctc.5c00489","DOIUrl":null,"url":null,"abstract":"<p><p>The rational design of stable and highly preorganized non-native and/or cyclic peptides is a challenging task that requires atomically detailed insight into folded and unfolded conformational ensembles. In this work, we demonstrate how Markov models constructed from collections of simulated trajectories using general-purpose force fields can be reweighted against NMR measurements to produce accurate folding landscapes. Here, we model the folding landscapes of 12 linear and cyclic peptide β hairpin mimics studied by the Erdelyi group, with the goal of reproducing the effects of subtle chemical modifications on peptide folding stability. The Bayesian Inference of Conformational Populations (BICePs) algorithm was first used to refine Karplus parameters to obtain an optimal forward model for scalar coupling constants; then, BICePs was used to reweight conformational ensembles against experimental NMR observables (NOE distances, chemical shifts, and <sup>3</sup><i>J</i><sub><i>H</i><sup><i>N</i></sup><i>H</i><sup>α</sup></sub> scalar couplings). Before reweighting, Markov models of the folding dynamics reasonably capture the key features of the folding landscape. Only after reweighting, however, do we obtain folding landscapes that agree with experimental trends. Compared to previous estimates of folded populations made using the NAMFIS algorithm, BICePs-reweighted landscapes predict that the introduction of a side chain hydrogen- or halogen-bonding group changes the folding stability by no more than 2 kJ mol<sup>-1</sup>. The overall agreement between simulated and experimental NMR observables suggests that our approach is highly robust, offering a reliable pathway for designing foldable non-natural and cyclic peptides.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Resolution Tuning of Non-Natural and Cyclic Peptide Folding Landscapes against NMR Measurements Using Markov Models and Bayesian Inference of Conformational Populations.\",\"authors\":\"Thi Dung Nguyen, Robert M Raddi, Vincent A Voelz\",\"doi\":\"10.1021/acs.jctc.5c00489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rational design of stable and highly preorganized non-native and/or cyclic peptides is a challenging task that requires atomically detailed insight into folded and unfolded conformational ensembles. In this work, we demonstrate how Markov models constructed from collections of simulated trajectories using general-purpose force fields can be reweighted against NMR measurements to produce accurate folding landscapes. Here, we model the folding landscapes of 12 linear and cyclic peptide β hairpin mimics studied by the Erdelyi group, with the goal of reproducing the effects of subtle chemical modifications on peptide folding stability. The Bayesian Inference of Conformational Populations (BICePs) algorithm was first used to refine Karplus parameters to obtain an optimal forward model for scalar coupling constants; then, BICePs was used to reweight conformational ensembles against experimental NMR observables (NOE distances, chemical shifts, and <sup>3</sup><i>J</i><sub><i>H</i><sup><i>N</i></sup><i>H</i><sup>α</sup></sub> scalar couplings). Before reweighting, Markov models of the folding dynamics reasonably capture the key features of the folding landscape. Only after reweighting, however, do we obtain folding landscapes that agree with experimental trends. Compared to previous estimates of folded populations made using the NAMFIS algorithm, BICePs-reweighted landscapes predict that the introduction of a side chain hydrogen- or halogen-bonding group changes the folding stability by no more than 2 kJ mol<sup>-1</sup>. The overall agreement between simulated and experimental NMR observables suggests that our approach is highly robust, offering a reliable pathway for designing foldable non-natural and cyclic peptides.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.5c00489\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00489","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
High-Resolution Tuning of Non-Natural and Cyclic Peptide Folding Landscapes against NMR Measurements Using Markov Models and Bayesian Inference of Conformational Populations.
The rational design of stable and highly preorganized non-native and/or cyclic peptides is a challenging task that requires atomically detailed insight into folded and unfolded conformational ensembles. In this work, we demonstrate how Markov models constructed from collections of simulated trajectories using general-purpose force fields can be reweighted against NMR measurements to produce accurate folding landscapes. Here, we model the folding landscapes of 12 linear and cyclic peptide β hairpin mimics studied by the Erdelyi group, with the goal of reproducing the effects of subtle chemical modifications on peptide folding stability. The Bayesian Inference of Conformational Populations (BICePs) algorithm was first used to refine Karplus parameters to obtain an optimal forward model for scalar coupling constants; then, BICePs was used to reweight conformational ensembles against experimental NMR observables (NOE distances, chemical shifts, and 3JHNHα scalar couplings). Before reweighting, Markov models of the folding dynamics reasonably capture the key features of the folding landscape. Only after reweighting, however, do we obtain folding landscapes that agree with experimental trends. Compared to previous estimates of folded populations made using the NAMFIS algorithm, BICePs-reweighted landscapes predict that the introduction of a side chain hydrogen- or halogen-bonding group changes the folding stability by no more than 2 kJ mol-1. The overall agreement between simulated and experimental NMR observables suggests that our approach is highly robust, offering a reliable pathway for designing foldable non-natural and cyclic peptides.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.