Marc U Engelhardt, Markus O Zimmermann, Finn Mier, Frank M Boeckler
{"title":"大规模数据生成中评估卤素-π相互作用的QM方法比较。","authors":"Marc U Engelhardt, Markus O Zimmermann, Finn Mier, Frank M Boeckler","doi":"10.1021/acs.jctc.5c00456","DOIUrl":null,"url":null,"abstract":"<p><p>Halogen-π interactions play a pivotal role in molecular recognition processes, drug design, and therapeutic strategies, providing unique opportunities for enhancing and fine-tuning the binding affinity and specificity of pharmaceutical agents. The present study systematically benchmarks various combinations of quantum mechanical (QM) methods and basis sets to characterize halogen-π interactions in model systems. We evaluate both density functional theory (DFT) methods and wave function-based post-HF methods in terms of accuracy to reference calculations at the CCSD(T)/CBS level of theory and runtime efficiency. By balancing these crucial aspects, we aim to identify an optimal configuration suitable for high-throughput applications. Our results indicate that MP2 using the reasonably large TZVPP basis set is in excellent agreement with reference calculations, striking a balance between accuracy and computational efficiency. This allows us to generate large, reliable data sets, which will serve as a basis to develop and train machine-learning models capable of accurately capturing the strength of halogen-π interactions, thereby providing a robust data-driven foundation for medicinal chemistry analysis.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of QM Methods for the Evaluation of Halogen-π Interactions for Large-Scale Data Generation.\",\"authors\":\"Marc U Engelhardt, Markus O Zimmermann, Finn Mier, Frank M Boeckler\",\"doi\":\"10.1021/acs.jctc.5c00456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Halogen-π interactions play a pivotal role in molecular recognition processes, drug design, and therapeutic strategies, providing unique opportunities for enhancing and fine-tuning the binding affinity and specificity of pharmaceutical agents. The present study systematically benchmarks various combinations of quantum mechanical (QM) methods and basis sets to characterize halogen-π interactions in model systems. We evaluate both density functional theory (DFT) methods and wave function-based post-HF methods in terms of accuracy to reference calculations at the CCSD(T)/CBS level of theory and runtime efficiency. By balancing these crucial aspects, we aim to identify an optimal configuration suitable for high-throughput applications. Our results indicate that MP2 using the reasonably large TZVPP basis set is in excellent agreement with reference calculations, striking a balance between accuracy and computational efficiency. This allows us to generate large, reliable data sets, which will serve as a basis to develop and train machine-learning models capable of accurately capturing the strength of halogen-π interactions, thereby providing a robust data-driven foundation for medicinal chemistry analysis.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.5c00456\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00456","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Comparison of QM Methods for the Evaluation of Halogen-π Interactions for Large-Scale Data Generation.
Halogen-π interactions play a pivotal role in molecular recognition processes, drug design, and therapeutic strategies, providing unique opportunities for enhancing and fine-tuning the binding affinity and specificity of pharmaceutical agents. The present study systematically benchmarks various combinations of quantum mechanical (QM) methods and basis sets to characterize halogen-π interactions in model systems. We evaluate both density functional theory (DFT) methods and wave function-based post-HF methods in terms of accuracy to reference calculations at the CCSD(T)/CBS level of theory and runtime efficiency. By balancing these crucial aspects, we aim to identify an optimal configuration suitable for high-throughput applications. Our results indicate that MP2 using the reasonably large TZVPP basis set is in excellent agreement with reference calculations, striking a balance between accuracy and computational efficiency. This allows us to generate large, reliable data sets, which will serve as a basis to develop and train machine-learning models capable of accurately capturing the strength of halogen-π interactions, thereby providing a robust data-driven foundation for medicinal chemistry analysis.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.