优化分离方法,探索荷花源性细胞外囊泡调节炎症和促进伤口愈合的治疗潜力。

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kai-Jiun Lo, Mu-Hui Wang, Ching-Yao Kuo, Min-Hsiung Pan
{"title":"优化分离方法,探索荷花源性细胞外囊泡调节炎症和促进伤口愈合的治疗潜力。","authors":"Kai-Jiun Lo, Mu-Hui Wang, Ching-Yao Kuo, Min-Hsiung Pan","doi":"10.1021/acsbiomaterials.5c00377","DOIUrl":null,"url":null,"abstract":"<p><p>In the past decade, with the rise of research on plant-derived extracellular vesicles (PDEVs), scientists have been continuously exploring the bioactivity of PDEVs. Many PDEVs have been shown to possess a variety of biological activities. Given that the specific characteristics of EVs are believed to be related to their source cells, PDEVs from traditional Chinese medicinal herbs hold significant potential for development. In this study, lotus (<i>Nelumbo nucifera</i> Gaertn.) leaves were selected as the source of PDEVs, and the impact of different isolation methods on their characteristics was evaluated, while their potential biological activities were also assessed. Lotus-derived EVs (LDEVs) were isolated by using tangential flow filtration (TFF), ultracentrifugation (UC), density gradient ultracentrifugation (DGU), and size-exclusion chromatography (SEC), respectively. The mean sizes of LDEVs isolated by various methods were in the range of 130-160 nm. Although the LDEVs isolated by the TFF method had a lower zeta potential, it exhibited the highest purity, with a yield of 3.69 ± 0.43 × 10<sup>9</sup> particles/g lotus leaves. Notably, LDEVs isolated by different methods all demonstrated the ability to attenuate LPS-induced inflammation in RAW264.7 cells, significantly decreasing the nitrite concentration in the culture medium. Furthermore, LDEVs also showed potential for wound healing, promoting the migration of HaCaT cells in vitro. LDEVs also demonstrated internalization by RAW264.7 and HaCaT cells. These results support the potential of LDEVs for biomedical applications while also suggesting that TFF is a promising and viable strategy for large-scale PDEV isolation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"4424-4435"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264863/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing Isolation Methods and Exploring the Therapeutic Potential of Lotus-Derived Extracellular Vesicles in Modulating Inflammation and Promoting Wound Healing.\",\"authors\":\"Kai-Jiun Lo, Mu-Hui Wang, Ching-Yao Kuo, Min-Hsiung Pan\",\"doi\":\"10.1021/acsbiomaterials.5c00377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the past decade, with the rise of research on plant-derived extracellular vesicles (PDEVs), scientists have been continuously exploring the bioactivity of PDEVs. Many PDEVs have been shown to possess a variety of biological activities. Given that the specific characteristics of EVs are believed to be related to their source cells, PDEVs from traditional Chinese medicinal herbs hold significant potential for development. In this study, lotus (<i>Nelumbo nucifera</i> Gaertn.) leaves were selected as the source of PDEVs, and the impact of different isolation methods on their characteristics was evaluated, while their potential biological activities were also assessed. Lotus-derived EVs (LDEVs) were isolated by using tangential flow filtration (TFF), ultracentrifugation (UC), density gradient ultracentrifugation (DGU), and size-exclusion chromatography (SEC), respectively. The mean sizes of LDEVs isolated by various methods were in the range of 130-160 nm. Although the LDEVs isolated by the TFF method had a lower zeta potential, it exhibited the highest purity, with a yield of 3.69 ± 0.43 × 10<sup>9</sup> particles/g lotus leaves. Notably, LDEVs isolated by different methods all demonstrated the ability to attenuate LPS-induced inflammation in RAW264.7 cells, significantly decreasing the nitrite concentration in the culture medium. Furthermore, LDEVs also showed potential for wound healing, promoting the migration of HaCaT cells in vitro. LDEVs also demonstrated internalization by RAW264.7 and HaCaT cells. These results support the potential of LDEVs for biomedical applications while also suggesting that TFF is a promising and viable strategy for large-scale PDEV isolation.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"4424-4435\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264863/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00377\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00377","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

近十年来,随着植物源性细胞外囊泡(PDEVs)研究的兴起,科学家们不断探索PDEVs的生物活性。许多pdev已被证明具有多种生物活性。考虑到电动汽车的特定特性被认为与其来源细胞有关,从传统中药中提取的PDEVs具有巨大的开发潜力。本研究以荷叶为原料,研究了不同分离方法对PDEVs特性的影响,并对其潜在的生物活性进行了评价。分别采用切向流过滤(TFF)、超离心(UC)、密度梯度超离心(DGU)和粒径隔离色谱(SEC)分离荷花源性ev。各方法分离得到的LDEVs平均粒径在130 ~ 160 nm之间。虽然TFF法分离的LDEVs具有较低的zeta电位,但其纯度最高,产率为3.69±0.43 × 109粒/g荷叶。值得注意的是,不同方法分离的LDEVs均表现出减轻lps诱导的RAW264.7细胞炎症的能力,显著降低了培养基中亚硝酸盐的浓度。此外,LDEVs还显示出伤口愈合的潜力,促进体外HaCaT细胞的迁移。ldev也被RAW264.7和HaCaT细胞内化。这些结果支持了ldev在生物医学应用方面的潜力,同时也表明TFF是大规模分离PDEV的一种有前途和可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Isolation Methods and Exploring the Therapeutic Potential of Lotus-Derived Extracellular Vesicles in Modulating Inflammation and Promoting Wound Healing.

In the past decade, with the rise of research on plant-derived extracellular vesicles (PDEVs), scientists have been continuously exploring the bioactivity of PDEVs. Many PDEVs have been shown to possess a variety of biological activities. Given that the specific characteristics of EVs are believed to be related to their source cells, PDEVs from traditional Chinese medicinal herbs hold significant potential for development. In this study, lotus (Nelumbo nucifera Gaertn.) leaves were selected as the source of PDEVs, and the impact of different isolation methods on their characteristics was evaluated, while their potential biological activities were also assessed. Lotus-derived EVs (LDEVs) were isolated by using tangential flow filtration (TFF), ultracentrifugation (UC), density gradient ultracentrifugation (DGU), and size-exclusion chromatography (SEC), respectively. The mean sizes of LDEVs isolated by various methods were in the range of 130-160 nm. Although the LDEVs isolated by the TFF method had a lower zeta potential, it exhibited the highest purity, with a yield of 3.69 ± 0.43 × 109 particles/g lotus leaves. Notably, LDEVs isolated by different methods all demonstrated the ability to attenuate LPS-induced inflammation in RAW264.7 cells, significantly decreasing the nitrite concentration in the culture medium. Furthermore, LDEVs also showed potential for wound healing, promoting the migration of HaCaT cells in vitro. LDEVs also demonstrated internalization by RAW264.7 and HaCaT cells. These results support the potential of LDEVs for biomedical applications while also suggesting that TFF is a promising and viable strategy for large-scale PDEV isolation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信