求助PDF
{"title":"k_1 + 1r -饱和超图的两个稳定性定理","authors":"Jianfeng Hou, Heng Li, Caihong Yang, Qinghou Zeng, Yixiao Zhang","doi":"10.1002/jgt.23241","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> be a family of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-uniform hypergraphs (henceforth <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs). An <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math>-saturated <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph is a maximal <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph not containing any member of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> as a subgraph. For integers <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>r</mi>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math> be the collection of all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> with at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfenced>\n <mfrac>\n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n </semantics></math> edges such that for some <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </semantics></math>-set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> every pair <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mi>u</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>⊂</mo>\n \n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is covered by an edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>, and let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be the complete <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices with no two part sizes differing by more than one. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>t</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be the number of edges in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Our first result shows that for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mi>r</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>r</mi>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>-saturated <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>t</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>ℓ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>ℓ</mi>\n </mrow>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> edges contains a complete <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite subgraph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices, which extends a stability theorem for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-saturated graphs given by Popielarz, Sahasrabudhe, and Snyder. We also show that the bound is best possible. Our second result is motivated by a celebrated theorem of Andrásfai, Erdős, and Sós, which states that for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices with minimum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>></mo>\n \n <mfrac>\n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite. We give a hypergraph version of it. The <i>minimum positive co-degree</i> of an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>-graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ℋ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, is the maximum <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> such that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-set contained in an edge of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n </semantics></math> is contained in at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> distinct edges of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> be an integer and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math> be a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>3</mn>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>-saturated 3-graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices. We prove that if either <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mn>2</mn>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ℋ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>></mo>\n \n <mfrac>\n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>7</mn>\n </mrow>\n \n <mrow>\n <mn>3</mn>\n \n <mi>ℓ</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>; or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>δ</mi>\n \n <mn>2</mn>\n \n <mo>+</mo>\n </msubsup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ℋ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>></mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>∕</mo>\n \n <mn>7</mn>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n </mrow>\n </mrow>\n </semantics></math>-partite; and the bound is best possible. This is the first stability result on minimum positive co-degree for hypergraphs.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 4","pages":"492-504"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Stability Theorems for \\n \\n \\n \\n \\n K\\n \\n ℓ\\n +\\n 1\\n \\n r\\n \\n \\n \\n -Saturated Hypergraphs\",\"authors\":\"Jianfeng Hou, Heng Li, Caihong Yang, Qinghou Zeng, Yixiao Zhang\",\"doi\":\"10.1002/jgt.23241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> be a family of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-uniform hypergraphs (henceforth <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graphs). An <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-saturated <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graph is a maximal <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graph not containing any member of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> as a subgraph. For integers <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>≥</mo>\\n \\n <mi>r</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mi>r</mi>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math> be the collection of all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with at most <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mfenced>\\n <mfrac>\\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </semantics></math> edges such that for some <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </semantics></math>-set <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> every pair <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mi>u</mi>\\n \\n <mo>,</mo>\\n \\n <mi>v</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>⊂</mo>\\n \\n <mi>S</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is covered by an edge in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, and let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ℓ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> be the complete <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-partite <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graph on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> vertices with no two part sizes differing by more than one. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>t</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ℓ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> be the number of edges in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ℓ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. Our first result shows that for each <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>≥</mo>\\n \\n <mi>r</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mi>r</mi>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math>-saturated <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graph on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> vertices with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>t</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ℓ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>−</mo>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mi>ℓ</mi>\\n </mrow>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> edges contains a complete <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-partite subgraph on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> vertices, which extends a stability theorem for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-saturated graphs given by Popielarz, Sahasrabudhe, and Snyder. We also show that the bound is best possible. Our second result is motivated by a celebrated theorem of Andrásfai, Erdős, and Sós, which states that for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> vertices with minimum degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>></mo>\\n \\n <mfrac>\\n <mrow>\\n <mn>3</mn>\\n \\n <mi>ℓ</mi>\\n \\n <mo>−</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mi>ℓ</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-partite. We give a hypergraph version of it. The <i>minimum positive co-degree</i> of an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℋ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>+</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>ℋ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, is the maximum <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> such that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-set contained in an edge of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℋ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is contained in at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> distinct edges of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℋ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> be an integer and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℋ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> be a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mn>3</mn>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math>-saturated 3-graph on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> vertices. We prove that if either <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>δ</mi>\\n \\n <mn>2</mn>\\n \\n <mo>+</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>ℋ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>></mo>\\n \\n <mfrac>\\n <mrow>\\n <mn>3</mn>\\n \\n <mi>ℓ</mi>\\n \\n <mo>−</mo>\\n \\n <mn>7</mn>\\n </mrow>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mi>ℓ</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>; or <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>=</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>δ</mi>\\n \\n <mn>2</mn>\\n \\n <mo>+</mo>\\n </msubsup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>ℋ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>></mo>\\n \\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>∕</mo>\\n \\n <mn>7</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℋ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-partite; and the bound is best possible. This is the first stability result on minimum positive co-degree for hypergraphs.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 4\",\"pages\":\"492-504\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23241\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23241","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用