图划分为2连通子图的新不变量

IF 1 3区 数学 Q2 MATHEMATICS
Michitaka Furuya, Masaki Kashima, Katsuhiro Ota
{"title":"图划分为2连通子图的新不变量","authors":"Michitaka Furuya,&nbsp;Masaki Kashima,&nbsp;Katsuhiro Ota","doi":"10.1002/jgt.23242","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> be a graph of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>. For an integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math>, a partition <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>P</mi>\n </mrow>\n </mrow>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is called a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-proper partition of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> if every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>P</mi>\n \n <mo>∈</mo>\n \n <mi>P</mi>\n </mrow>\n </mrow>\n </semantics></math> induces a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-connected subgraph of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. This concept was introduced by Ferrara et al., and Borozan et al. gave minimum degree conditions for the existence of a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-proper partition. In particular, when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math>, they proved that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has a 2-proper partition <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>P</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>P</mi>\n \n <mo>∣</mo>\n \n <mo>≤</mo>\n \n <mfrac>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math>. Later, Chen et al. extended the result by giving a minimum degree sum condition for the existence of a 2-proper partition. In this paper, we introduce two new invariants of graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>σ</mi>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>α</mi>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, which are defined from degree sum of particular independent sets. Our result is that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>σ</mi>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>, then with some exceptions, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has a 2-proper partition <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>P</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>P</mi>\n \n <mo>∣</mo>\n \n <mo>≤</mo>\n \n <msup>\n <mi>α</mi>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. We completely determine exceptional graphs. This result implies both of results by Borozan et al. and by Chen et al. Moreover, we obtain a minimum degree product condition for the existence of a 2-proper partition as a corollary of our result.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 4","pages":"505-513"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Invariants for Partitioning a Graph Into 2-Connected Subgraphs\",\"authors\":\"Michitaka Furuya,&nbsp;Masaki Kashima,&nbsp;Katsuhiro Ota\",\"doi\":\"10.1002/jgt.23242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> be a graph of order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. For an integer <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, a partition <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> is called a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-proper partition of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> if every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>P</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>P</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> induces a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-connected subgraph of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. This concept was introduced by Ferrara et al., and Borozan et al. gave minimum degree conditions for the existence of a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-proper partition. In particular, when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, they proved that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <msqrt>\\n <mi>n</mi>\\n </msqrt>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> has a 2-proper partition <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>P</mi>\\n \\n <mo>∣</mo>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mrow>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </mrow>\\n </semantics></math>. Later, Chen et al. extended the result by giving a minimum degree sum condition for the existence of a 2-proper partition. In this paper, we introduce two new invariants of graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>σ</mi>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>α</mi>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, which are defined from degree sum of particular independent sets. Our result is that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>σ</mi>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, then with some exceptions, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> has a 2-proper partition <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>P</mi>\\n \\n <mo>∣</mo>\\n \\n <mo>≤</mo>\\n \\n <msup>\\n <mi>α</mi>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. We completely determine exceptional graphs. This result implies both of results by Borozan et al. and by Chen et al. Moreover, we obtain a minimum degree product condition for the existence of a 2-proper partition as a corollary of our result.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 4\",\"pages\":\"505-513\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23242\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23242","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个n阶的图。对于整数k≥2,V (G)的分拆P称为ak - G的固有划分,如果每个P∈P都归纳出aG的k连通子图。这一概念由Ferrara等人引入,Borozan等人给出了k -真分区存在的最小度条件。特别是当k = 2时,他们证明了如果δ (G)≥n,那么G有一个P∣P∣的2-真分区≤n−1 δ (G) .后来,Chen等人给出了2-真分区存在的最小次和条件,对结果进行了推广。在本文中,我们引入了两个新的图σ * (G)和α * (G),由特定独立集的度数和定义。 我们的结果是,如果σ * (G)≥n,那么除了一些例外,G有一个2-真划分P, P∣P∣≤α * (g)。我们完全确定例外图。这一结果暗示了Borozan et al.和Chen et al.的结果。此外,作为结果的推论,我们得到了2-真分区存在的最小次积条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Invariants for Partitioning a Graph Into 2-Connected Subgraphs

Let G be a graph of order n . For an integer k 2 , a partition P of V ( G ) is called a k -proper partition of G if every P P induces a k -connected subgraph of G . This concept was introduced by Ferrara et al., and Borozan et al. gave minimum degree conditions for the existence of a k -proper partition. In particular, when k = 2 , they proved that if δ ( G ) n , then G has a 2-proper partition P with P n 1 δ ( G ) . Later, Chen et al. extended the result by giving a minimum degree sum condition for the existence of a 2-proper partition. In this paper, we introduce two new invariants of graphs σ * ( G ) and α * ( G ) , which are defined from degree sum of particular independent sets. Our result is that if σ * ( G ) n , then with some exceptions, G has a 2-proper partition P with P α * ( G ) . We completely determine exceptional graphs. This result implies both of results by Borozan et al. and by Chen et al. Moreover, we obtain a minimum degree product condition for the existence of a 2-proper partition as a corollary of our result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信