具有化学反应的双色散多孔介质中溶解驱动对流:Brinkman模型

IF 2.6 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-03-31 DOI:10.1002/htj.23333
Mahesh Singh, Ravi Ragoju, G. Shiva Kumar Reddy, Dharmvir Singh, Dhananjay Yadav
{"title":"具有化学反应的双色散多孔介质中溶解驱动对流:Brinkman模型","authors":"Mahesh Singh,&nbsp;Ravi Ragoju,&nbsp;G. Shiva Kumar Reddy,&nbsp;Dharmvir Singh,&nbsp;Dhananjay Yadav","doi":"10.1002/htj.23333","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The onset of dissolution-driven convection in a bi-dispersive horizontal porous layer with first-order chemical reaction is analyzed. Linear stability analysis and nonlinear stability analysis have been performed in the present study. To examine the linear stability of the system, the basic state is perturbed using small-amplitude disturbances. Thereafter, the normal modes are used to solve the nondimensional equations governing the system. The results show that the thresholds for linear stability and nonlinear stability coincide, demonstrating that the linear stability theory sufficiently describes the mechanism for the onset of convection. Variation of the critical Rayleigh number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>R</mi>\n \n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math> in terms of other physical parameters is analyzed. The results imply that the momentum transfer coefficient <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>γ</mi>\n </mrow>\n </mrow>\n </semantics></math>, the Damköhler number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>D</mi>\n \n <mi>c</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, the Darcy number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n \n <mi>a</mi>\n </mrow>\n </mrow>\n </semantics></math>, and the permeability ratio <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>κ</mi>\n \n <mi>r</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> contribute in stabilizing the system. The results suggest that as the Damköhler number rises, the dissolution reaction soaks up some of the heat energy, which results in the surroundings being colder. Eventually, the system is stabilized since a greater temperature gradient is needed for the onset of convection. The rigid-rigid boundaries prove to be a more stable configuration in comparison to the rigid-free and free-free boundaries.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 5","pages":"2959-2966"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissolution-Driven Convection in a Bidispersive Porous Medium With Chemical Reaction: Brinkman Model\",\"authors\":\"Mahesh Singh,&nbsp;Ravi Ragoju,&nbsp;G. Shiva Kumar Reddy,&nbsp;Dharmvir Singh,&nbsp;Dhananjay Yadav\",\"doi\":\"10.1002/htj.23333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The onset of dissolution-driven convection in a bi-dispersive horizontal porous layer with first-order chemical reaction is analyzed. Linear stability analysis and nonlinear stability analysis have been performed in the present study. To examine the linear stability of the system, the basic state is perturbed using small-amplitude disturbances. Thereafter, the normal modes are used to solve the nondimensional equations governing the system. The results show that the thresholds for linear stability and nonlinear stability coincide, demonstrating that the linear stability theory sufficiently describes the mechanism for the onset of convection. Variation of the critical Rayleigh number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>R</mi>\\n \\n <mi>c</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> in terms of other physical parameters is analyzed. The results imply that the momentum transfer coefficient <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>γ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, the Damköhler number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>D</mi>\\n \\n <mi>c</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, the Darcy number <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>D</mi>\\n \\n <mi>a</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, and the permeability ratio <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>κ</mi>\\n \\n <mi>r</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> contribute in stabilizing the system. The results suggest that as the Damköhler number rises, the dissolution reaction soaks up some of the heat energy, which results in the surroundings being colder. Eventually, the system is stabilized since a greater temperature gradient is needed for the onset of convection. The rigid-rigid boundaries prove to be a more stable configuration in comparison to the rigid-free and free-free boundaries.</p>\\n </div>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":\"54 5\",\"pages\":\"2959-2966\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

分析了双色散水平多孔层溶蚀驱动对流发生的一级化学反应。本文进行了线性稳定性分析和非线性稳定性分析。为了检验系统的线性稳定性,用小振幅扰动扰动系统的基本状态。然后,用正态模态求解控制系统的无量纲方程。结果表明,线性稳定性阈值与非线性稳定性阈值重合,表明线性稳定性理论充分描述了对流发生的机理。分析了临界瑞利数rc随其他物理参数的变化规律。结果表明,动量传递系数γ, Damköhler数D c,达西数Da和渗透率比κ r对系统稳定起作用。结果表明,随着Damköhler数值的增加,溶解反应会吸收一些热能,从而导致周围环境变冷。最终,系统稳定下来,因为对流的开始需要更大的温度梯度。刚性-刚性边界比刚性-自由边界和自由-自由边界更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissolution-Driven Convection in a Bidispersive Porous Medium With Chemical Reaction: Brinkman Model

The onset of dissolution-driven convection in a bi-dispersive horizontal porous layer with first-order chemical reaction is analyzed. Linear stability analysis and nonlinear stability analysis have been performed in the present study. To examine the linear stability of the system, the basic state is perturbed using small-amplitude disturbances. Thereafter, the normal modes are used to solve the nondimensional equations governing the system. The results show that the thresholds for linear stability and nonlinear stability coincide, demonstrating that the linear stability theory sufficiently describes the mechanism for the onset of convection. Variation of the critical Rayleigh number R c in terms of other physical parameters is analyzed. The results imply that the momentum transfer coefficient γ , the Damköhler number D c , the Darcy number D a , and the permeability ratio κ r contribute in stabilizing the system. The results suggest that as the Damköhler number rises, the dissolution reaction soaks up some of the heat energy, which results in the surroundings being colder. Eventually, the system is stabilized since a greater temperature gradient is needed for the onset of convection. The rigid-rigid boundaries prove to be a more stable configuration in comparison to the rigid-free and free-free boundaries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信