共形超图:对偶性及其对上团截线问题的启示

IF 1 3区 数学 Q2 MATHEMATICS
Endre Boros, Vladimir Gurvich, Martin Milanič, Yushi Uno
{"title":"共形超图:对偶性及其对上团截线问题的启示","authors":"Endre Boros,&nbsp;Vladimir Gurvich,&nbsp;Martin Milanič,&nbsp;Yushi Uno","doi":"10.1002/jgt.23238","DOIUrl":null,"url":null,"abstract":"<p>Given a hypergraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math>, the dual hypergraph of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math> is the hypergraph of all minimal transversals of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℋ</mi>\n </mrow>\n </mrow>\n </semantics></math>. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, and so on. Motivated by a question related to clique transversals in graphs, we study in this paper conformality of dual hypergraphs and prove several results related to the problem of recognizing this property. In particular, we show that the problem is in \n<span>co-NP</span> and that it can be solved in polynomial time for hypergraphs of bounded dimension. For dimension 3, we show that the problem can be reduced to <span>2-Satisfiability.</span> Our approach has an application in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>, for any fixed <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 4","pages":"466-480"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23238","citationCount":"0","resultStr":"{\"title\":\"Conformal Hypergraphs: Duality and Implications for the Upper Clique Transversal Problem\",\"authors\":\"Endre Boros,&nbsp;Vladimir Gurvich,&nbsp;Martin Milanič,&nbsp;Yushi Uno\",\"doi\":\"10.1002/jgt.23238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a hypergraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℋ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, the dual hypergraph of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℋ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is the hypergraph of all minimal transversals of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℋ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, and so on. Motivated by a question related to clique transversals in graphs, we study in this paper conformality of dual hypergraphs and prove several results related to the problem of recognizing this property. In particular, we show that the problem is in \\n<span>co-NP</span> and that it can be solved in polynomial time for hypergraphs of bounded dimension. For dimension 3, we show that the problem can be reduced to <span>2-Satisfiability.</span> Our approach has an application in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, for any fixed <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 4\",\"pages\":\"466-480\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23238\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23238\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23238","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个超图h,h的对偶超图是h的所有最小截线的超图。对偶超图总是Sperner,也就是说,没有一个超边缘包含另一个超边缘。Sperner超图的一种特殊情况是共形Sperner超图,它对应于图的极大团族。所有这些概念都在数学和计算机科学的许多领域发挥着重要作用,包括组合学、代数、数据库理论等。在图中团截线问题的启发下,我们研究了对偶超图的一致性,并证明了与此性质识别问题有关的几个结果。特别地,我们证明了这个问题是co-NP的,并且对于有界维的超图可以在多项式时间内解决。对于维度3,我们证明了问题可以简化为2-可满足性。我们的方法在算法图论中有一个应用:我们获得了一个多项式时间算法,用于识别图,其中最大团的所有最小截线的大小最多为k,对于任何固定k。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conformal Hypergraphs: Duality and Implications for the Upper Clique Transversal Problem

Conformal Hypergraphs: Duality and Implications for the Upper Clique Transversal Problem

Given a hypergraph , the dual hypergraph of is the hypergraph of all minimal transversals of . The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, and so on. Motivated by a question related to clique transversals in graphs, we study in this paper conformality of dual hypergraphs and prove several results related to the problem of recognizing this property. In particular, we show that the problem is in co-NP and that it can be solved in polynomial time for hypergraphs of bounded dimension. For dimension 3, we show that the problem can be reduced to 2-Satisfiability. Our approach has an application in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most k , for any fixed k .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信