直流道内振荡叶片的强制对流分析:叶片初始位置的影响

IF 2.6 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-04-28 DOI:10.1002/htj.23316
Abdullah Al Mehedi, Durjoy Kumar Paul, Nishitha Paul
{"title":"直流道内振荡叶片的强制对流分析:叶片初始位置的影响","authors":"Abdullah Al Mehedi,&nbsp;Durjoy Kumar Paul,&nbsp;Nishitha Paul","doi":"10.1002/htj.23316","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The present computational study examines the transient analysis of forced convective flow and heat transfer in a long open channel with an oscillating blade initially placed either horizontally or vertically to investigate the impacts on the heat transfer performance and pressure drop in the channel of the blade's position. For mathematical modeling, the Arbitrary Lagrangian–Eulerian finite element method has been employed to precisely model the moving mesh boundary conditions under various simulation parameters. Simulations are performed for the Reynolds number, <i>Re</i> = 50, and Prandtl number, <i>Pr</i> = 1. The nondimensional maximum linear velocity and oscillating frequency are modified with the values <i>V</i><sub>m</sub> = 0.5, 1.0, 2.0, and <i>F</i><sub>c</sub> = 0.2, 0.5, 0.8. The results show that the vertically positioned blade provides the best thermal performance at <i>V</i><sub>m</sub> = 1.0 and <i>F</i><sub>c</sub> = 0.8, together with the maximum average cavity pressure drop, while the horizontally positioned blade becomes the least thermoefficient at <i>V</i><sub>m</sub> = 0.5 and <i>F</i><sub>c</sub> = 0.8, with the corresponding lowest average pressure drop. It can also be observed that the initial blade position significantly impacts both heat transfer and pressure drop characteristics. A vertically positioned blade demonstrates superior heat transfer performance compared with a horizontally positioned blade. The analysis may be crucial for determining the impact of an oscillating body on the heat transfer and pressure drop encountered in different high heat flux applications, like, crystal formation, high-performance building insulation, solar distiller, solar energy collectors, nuclear reactors, electronic device cooling, drying technology, and so forth.</p></div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 5","pages":"3432-3450"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forced Convection Analysis of an Oscillating Blade in a Straight Channel: Effects of Blade's Initial Position\",\"authors\":\"Abdullah Al Mehedi,&nbsp;Durjoy Kumar Paul,&nbsp;Nishitha Paul\",\"doi\":\"10.1002/htj.23316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The present computational study examines the transient analysis of forced convective flow and heat transfer in a long open channel with an oscillating blade initially placed either horizontally or vertically to investigate the impacts on the heat transfer performance and pressure drop in the channel of the blade's position. For mathematical modeling, the Arbitrary Lagrangian–Eulerian finite element method has been employed to precisely model the moving mesh boundary conditions under various simulation parameters. Simulations are performed for the Reynolds number, <i>Re</i> = 50, and Prandtl number, <i>Pr</i> = 1. The nondimensional maximum linear velocity and oscillating frequency are modified with the values <i>V</i><sub>m</sub> = 0.5, 1.0, 2.0, and <i>F</i><sub>c</sub> = 0.2, 0.5, 0.8. The results show that the vertically positioned blade provides the best thermal performance at <i>V</i><sub>m</sub> = 1.0 and <i>F</i><sub>c</sub> = 0.8, together with the maximum average cavity pressure drop, while the horizontally positioned blade becomes the least thermoefficient at <i>V</i><sub>m</sub> = 0.5 and <i>F</i><sub>c</sub> = 0.8, with the corresponding lowest average pressure drop. It can also be observed that the initial blade position significantly impacts both heat transfer and pressure drop characteristics. A vertically positioned blade demonstrates superior heat transfer performance compared with a horizontally positioned blade. The analysis may be crucial for determining the impact of an oscillating body on the heat transfer and pressure drop encountered in different high heat flux applications, like, crystal formation, high-performance building insulation, solar distiller, solar energy collectors, nuclear reactors, electronic device cooling, drying technology, and so forth.</p></div>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":\"54 5\",\"pages\":\"3432-3450\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过对长开式通道内叶片水平或垂直放置的瞬态强迫对流换热分析,探讨叶片位置对通道内换热性能和压降的影响。在数学建模方面,采用任意拉格朗日-欧拉有限元法对不同仿真参数下的运动网格边界条件进行了精确建模。对雷诺数Re = 50和普朗特数Pr = 1进行了模拟。将无量纲最大线速度和振荡频率修改为Vm = 0.5, 1.0, 2.0, Fc = 0.2, 0.5, 0.8。结果表明:垂直位置叶片在Vm = 1.0和Fc = 0.8时热效率最佳,平均空腔压降最大;水平位置叶片在Vm = 0.5和Fc = 0.8时热效率最差,平均空腔压降最小。还可以观察到,叶片初始位置对传热和压降特性都有显著影响。与水平放置的叶片相比,垂直放置的叶片具有更好的传热性能。该分析对于确定振荡体对不同高热流密度应用(如晶体形成、高性能建筑隔热、太阳能蒸馏器、太阳能集热器、核反应堆、电子设备冷却、干燥技术等)中遇到的传热和压降的影响可能至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forced Convection Analysis of an Oscillating Blade in a Straight Channel: Effects of Blade's Initial Position

The present computational study examines the transient analysis of forced convective flow and heat transfer in a long open channel with an oscillating blade initially placed either horizontally or vertically to investigate the impacts on the heat transfer performance and pressure drop in the channel of the blade's position. For mathematical modeling, the Arbitrary Lagrangian–Eulerian finite element method has been employed to precisely model the moving mesh boundary conditions under various simulation parameters. Simulations are performed for the Reynolds number, Re = 50, and Prandtl number, Pr = 1. The nondimensional maximum linear velocity and oscillating frequency are modified with the values Vm = 0.5, 1.0, 2.0, and Fc = 0.2, 0.5, 0.8. The results show that the vertically positioned blade provides the best thermal performance at Vm = 1.0 and Fc = 0.8, together with the maximum average cavity pressure drop, while the horizontally positioned blade becomes the least thermoefficient at Vm = 0.5 and Fc = 0.8, with the corresponding lowest average pressure drop. It can also be observed that the initial blade position significantly impacts both heat transfer and pressure drop characteristics. A vertically positioned blade demonstrates superior heat transfer performance compared with a horizontally positioned blade. The analysis may be crucial for determining the impact of an oscillating body on the heat transfer and pressure drop encountered in different high heat flux applications, like, crystal formation, high-performance building insulation, solar distiller, solar energy collectors, nuclear reactors, electronic device cooling, drying technology, and so forth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信