基于空间热分析和老化估计的电池状态平衡最优功率分割控制

Energy Storage Pub Date : 2025-06-11 DOI:10.1002/est2.70206
Vivek Teja Tanjavooru, Melina Graner, Prashant Pant, Thomas Hamacher, Holger Hesse
{"title":"基于空间热分析和老化估计的电池状态平衡最优功率分割控制","authors":"Vivek Teja Tanjavooru,&nbsp;Melina Graner,&nbsp;Prashant Pant,&nbsp;Thomas Hamacher,&nbsp;Holger Hesse","doi":"10.1002/est2.70206","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes an optimal control strategy for SOC balancing and introduces a framework for analyzing the spatial temperature distribution in a multi-pack battery energy storage system (BESS) composed of multiple battery modules. While various control techniques exist to distribute power among parallel-connected battery systems, their influence on the spatial temperature distribution within their modules is often neglected, despite temperature being a critical factor accelerating battery health degradation. To bridge this research gap, this framework integrates a 1D thermal simulation and state-of-health (SoH) estimation with power split control strategies. To showcase the application of this framework, a comparative study of two power-sharing methods is conducted: (i) Model Predictive Control (MPC) based State of Charge (SoC) balancing, and (ii) Rule-Based Control (RBC) strategies, highlighting their impact on temperature distribution and battery aging. Results show that MPC maintains a more uniform temperature profile, limiting peak temperatures to 300 K and minimizing SoH degradation, whereas RBC results in higher peak temperatures (314 K) and accelerated aging. In summary, this framework primarily intends to: (i) Enable researchers to further develop health-aware power-sharing strategies for BESS. (ii) Equip BESS operators with detailed spatial temperature insights to optimize power management and cooling systems.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70206","citationCount":"0","resultStr":"{\"title\":\"Optimal Power Split Control for State of Charge Balancing in Battery Systems With Integrated Spatial Thermal Analysis and Aging Estimation\",\"authors\":\"Vivek Teja Tanjavooru,&nbsp;Melina Graner,&nbsp;Prashant Pant,&nbsp;Thomas Hamacher,&nbsp;Holger Hesse\",\"doi\":\"10.1002/est2.70206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes an optimal control strategy for SOC balancing and introduces a framework for analyzing the spatial temperature distribution in a multi-pack battery energy storage system (BESS) composed of multiple battery modules. While various control techniques exist to distribute power among parallel-connected battery systems, their influence on the spatial temperature distribution within their modules is often neglected, despite temperature being a critical factor accelerating battery health degradation. To bridge this research gap, this framework integrates a 1D thermal simulation and state-of-health (SoH) estimation with power split control strategies. To showcase the application of this framework, a comparative study of two power-sharing methods is conducted: (i) Model Predictive Control (MPC) based State of Charge (SoC) balancing, and (ii) Rule-Based Control (RBC) strategies, highlighting their impact on temperature distribution and battery aging. Results show that MPC maintains a more uniform temperature profile, limiting peak temperatures to 300 K and minimizing SoH degradation, whereas RBC results in higher peak temperatures (314 K) and accelerated aging. In summary, this framework primarily intends to: (i) Enable researchers to further develop health-aware power-sharing strategies for BESS. (ii) Equip BESS operators with detailed spatial temperature insights to optimize power management and cooling systems.</p>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70206\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种SOC平衡的最优控制策略,并引入了一个分析由多个电池模块组成的多包电池储能系统(BESS)空间温度分布的框架。虽然存在各种控制技术来在并联电池系统之间分配功率,但它们对模块内空间温度分布的影响往往被忽视,尽管温度是加速电池健康退化的关键因素。为了弥补这一研究空白,该框架将一维热模拟和健康状态(SoH)估计与功率分割控制策略集成在一起。为了展示该框架的应用,对两种功率共享方法进行了比较研究:(i)基于模型预测控制(MPC)的荷电状态(SoC)平衡和(ii)基于规则的控制(RBC)策略,重点研究了它们对温度分布和电池老化的影响。结果表明,MPC保持了更均匀的温度分布,将峰值温度限制在300 K,最大限度地减少了SoH的降解,而RBC导致更高的峰值温度(314 K)和加速老化。总而言之,该框架的主要目的是:(i)使研究人员能够进一步制定具有健康意识的BESS权力分享战略。(ii)为BESS操作员提供详细的空间温度洞察,以优化电源管理和冷却系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Power Split Control for State of Charge Balancing in Battery Systems With Integrated Spatial Thermal Analysis and Aging Estimation

This paper proposes an optimal control strategy for SOC balancing and introduces a framework for analyzing the spatial temperature distribution in a multi-pack battery energy storage system (BESS) composed of multiple battery modules. While various control techniques exist to distribute power among parallel-connected battery systems, their influence on the spatial temperature distribution within their modules is often neglected, despite temperature being a critical factor accelerating battery health degradation. To bridge this research gap, this framework integrates a 1D thermal simulation and state-of-health (SoH) estimation with power split control strategies. To showcase the application of this framework, a comparative study of two power-sharing methods is conducted: (i) Model Predictive Control (MPC) based State of Charge (SoC) balancing, and (ii) Rule-Based Control (RBC) strategies, highlighting their impact on temperature distribution and battery aging. Results show that MPC maintains a more uniform temperature profile, limiting peak temperatures to 300 K and minimizing SoH degradation, whereas RBC results in higher peak temperatures (314 K) and accelerated aging. In summary, this framework primarily intends to: (i) Enable researchers to further develop health-aware power-sharing strategies for BESS. (ii) Equip BESS operators with detailed spatial temperature insights to optimize power management and cooling systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信