Georg Seitfudem, Markus Berger, Hannes Müller Schmied, Anne-Marie Boulay
{"title":"LCA中水资源短缺影响评价方法的更新与改进,AWARE2.0","authors":"Georg Seitfudem, Markus Berger, Hannes Müller Schmied, Anne-Marie Boulay","doi":"10.1111/jiec.70023","DOIUrl":null,"url":null,"abstract":"<p>Supported by the Life Cycle Initiative, in 2018, the Water Use in Life Cycle Assessment (WULCA) working group published Available Water Remaining (AWARE), a consensus-based method for water scarcity impact assessment. This article presents AWARE2.0, an update based on new data and an improved calculation process and recommended by the authors of the original AWARE publication. Water availability for 1990–2019 and the global water consumption inventory of 2019 are modeled with the global hydrological model WaterGAP2.2e. AWARE2.0 refines the calculations for river deltas, inland sinks, and subdivided river basins and furthermore benefits from an improved representation of basin area, increased responsiveness of environmental water requirements to seasonal flow patterns, and a more appropriate water consumption definition. This work analyses differences between AWARE and AWARE2.0 and the influence of the improvements on the characterization factors (CFs). The update is relevant to life cycle assessment, since more than half of the water consumption inventory is linked to CFs changing by more than 10%. Globally relevant changes mainly result from the new input data including the temporal reference period, whereas other improvements target individual types of basins, sometimes changing their CFs by two orders of magnitude. The AWARE2.0 CFs are provided for 9406 basins and the country definitions of ecoinvent and GLAM. This article met the requirements for a gold-gold <i>JIE</i> data openness badge described at http://jie.click/badges.</p><p></p>","PeriodicalId":16050,"journal":{"name":"Journal of Industrial Ecology","volume":"29 3","pages":"891-907"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jiec.70023","citationCount":"0","resultStr":"{\"title\":\"The updated and improved method for water scarcity impact assessment in LCA, AWARE2.0\",\"authors\":\"Georg Seitfudem, Markus Berger, Hannes Müller Schmied, Anne-Marie Boulay\",\"doi\":\"10.1111/jiec.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Supported by the Life Cycle Initiative, in 2018, the Water Use in Life Cycle Assessment (WULCA) working group published Available Water Remaining (AWARE), a consensus-based method for water scarcity impact assessment. This article presents AWARE2.0, an update based on new data and an improved calculation process and recommended by the authors of the original AWARE publication. Water availability for 1990–2019 and the global water consumption inventory of 2019 are modeled with the global hydrological model WaterGAP2.2e. AWARE2.0 refines the calculations for river deltas, inland sinks, and subdivided river basins and furthermore benefits from an improved representation of basin area, increased responsiveness of environmental water requirements to seasonal flow patterns, and a more appropriate water consumption definition. This work analyses differences between AWARE and AWARE2.0 and the influence of the improvements on the characterization factors (CFs). The update is relevant to life cycle assessment, since more than half of the water consumption inventory is linked to CFs changing by more than 10%. Globally relevant changes mainly result from the new input data including the temporal reference period, whereas other improvements target individual types of basins, sometimes changing their CFs by two orders of magnitude. The AWARE2.0 CFs are provided for 9406 basins and the country definitions of ecoinvent and GLAM. This article met the requirements for a gold-gold <i>JIE</i> data openness badge described at http://jie.click/badges.</p><p></p>\",\"PeriodicalId\":16050,\"journal\":{\"name\":\"Journal of Industrial Ecology\",\"volume\":\"29 3\",\"pages\":\"891-907\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jiec.70023\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jiec.70023\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jiec.70023","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
The updated and improved method for water scarcity impact assessment in LCA, AWARE2.0
Supported by the Life Cycle Initiative, in 2018, the Water Use in Life Cycle Assessment (WULCA) working group published Available Water Remaining (AWARE), a consensus-based method for water scarcity impact assessment. This article presents AWARE2.0, an update based on new data and an improved calculation process and recommended by the authors of the original AWARE publication. Water availability for 1990–2019 and the global water consumption inventory of 2019 are modeled with the global hydrological model WaterGAP2.2e. AWARE2.0 refines the calculations for river deltas, inland sinks, and subdivided river basins and furthermore benefits from an improved representation of basin area, increased responsiveness of environmental water requirements to seasonal flow patterns, and a more appropriate water consumption definition. This work analyses differences between AWARE and AWARE2.0 and the influence of the improvements on the characterization factors (CFs). The update is relevant to life cycle assessment, since more than half of the water consumption inventory is linked to CFs changing by more than 10%. Globally relevant changes mainly result from the new input data including the temporal reference period, whereas other improvements target individual types of basins, sometimes changing their CFs by two orders of magnitude. The AWARE2.0 CFs are provided for 9406 basins and the country definitions of ecoinvent and GLAM. This article met the requirements for a gold-gold JIE data openness badge described at http://jie.click/badges.
期刊介绍:
The Journal of Industrial Ecology addresses a series of related topics:
material and energy flows studies (''industrial metabolism'')
technological change
dematerialization and decarbonization
life cycle planning, design and assessment
design for the environment
extended producer responsibility (''product stewardship'')
eco-industrial parks (''industrial symbiosis'')
product-oriented environmental policy
eco-efficiency
Journal of Industrial Ecology is open to and encourages submissions that are interdisciplinary in approach. In addition to more formal academic papers, the journal seeks to provide a forum for continuing exchange of information and opinions through contributions from scholars, environmental managers, policymakers, advocates and others involved in environmental science, management and policy.